Soluções livro circuitos elétricos
Chapter 1, Solution 3 (a) q(t) = ∫ i(t)dt + q(0) = (3t + 1) C (c) q(t) = ∫ 20 cos (10t + π / 6 ) + q(0) = (2sin(10t + π / 6) + 1) µ C (b) q(t) = ∫ (2t + s) dt + q(v) = (t 2 + 5t) mC
(d)
q(t) = ∫ 10e -30t sin 40t + q(0) =
10e -30t ( −30 sin 40t - 40 cos t) 900 + 1600 = − e - 30t (0.16cos40 t + 0.12 sin 40t) C
Chapter 1, Solution 4
q = ∫ idt = ∫ =
−5 5sin 6 π t dt = cos 6π t 6π 0
10
5 (1 − cos 0.06π ) = 4.698 mC 6π
Chapter 1, Solution 5
q = ∫ idt = ∫ =
1 e dt mC = - e -2t 2
-2t
2
0
1 (1 − e 4 ) mC = 490 µC 2
Chapter 1, Solution 6
(a) At t = 1ms, i =
dq 80 = = 40 mA dt 2 dq = 0 mA dt dq 80 = = - 20 mA 4 dt
(b) At t = 6ms, i =
(c) At t = 10ms, i =
Chapter 1, Solution 7
25A, dq i= = - 25A, dt 25A, 0 0, we have a source-free RLC circuit. α = R/(2L) = (40 + 60)/5 = 20 and ωo = 1 LC =
1 10 x 2.5
−3
= 20
ωo = α leads to critical damping i(t) = [(A + Bt)e-20t], i(0) = 0 = A di/dt = {[Be-20t] + [-20(Bt)e-20t]}, but di(0)/dt = -(1/L)[Ri(0) + vC(0)] = -(1/2.5)[0 + 24] Hence,
Chapter 8, Solution 17.
B = -9.6 or i(t) = [-9.6te-20t] A
i(0) = I0 = 0, v(0) = V0 = 4 x15 = 60 di(0) 1 = − (RI0 + V0 ) = −4(0 + 60) = −240 dt L 1 1 ωo = = = 10 LC 1 1 4 25 R 10 α= = = 20, which is > ωo . 2L 2 1 4
2 s = −α ± α 2 − ωo = −20 ± 300 = −20 ± 10 3 = −2.68, − 37.32
i( t ) = A1e − 2.68t + A 2e −37.32 t di(0) i(0) = 0 = A1 + A 2 , = −2.68A1 − 37.32A 2 = −240 dt This leads to A1 = −6.928 = −A 2 i( t ) = 6.928 e −37.32 t − e − 268t
(
)
Since, v( t ) =
1 t ∫ i( t )dt + 60, we get C 0