Simulado de raciocínio lógico
1) Sabe-se que existe pelo menos um A que é B. Sabe-se, também, que todo B é C. Segue-se, portanto, necessariamente que
a) todo C é B
b) todo C é A
c) algum A é C
d) nada que não seja C é A
e) algum A não é C
2) Considere as seguintes premissas (onde X, Y, Z e P são conjuntos não vazios):
Premissa 1: "X está contido em Y e em Z, ou X está contido em P"
Premissa 2: "X não está contido em P"
Pode-se, então, concluir que, necessariamente
a) Y está contido em Z
b) X está contido em Z
c) Y está contido em Z ou em P
d) X não está contido nem em P nem em Y
e) X não está contido nem em Y e nem em Z
3) Três rapazes e duas moças vão ao cinema e desejam sentar-se, os cinco, lado a lado, na mesma fila. O número de maneiras pelas quais eles podem distribuir-se nos assentos de modo que as duas moças fiquem juntas, uma ao lado da outra, é igual a
a) 2
b) 4
c) 24
d) 48
e) 120
4) De um grupo de 200 estudantes, 80 estão matriculados em Francês, 110 em Inglês e 40 não estão matriculados nem em Inglês nem em Francês. Seleciona-se, ao acaso, um dos 200 estudantes. A probabilidade de que o estudante selecionado esteja matriculado em pelo menos uma dessas disciplinas (isto é, em Inglês ou em Francês) é igual a
a) 30/200
b) 130/200
c) 150/200
d) 160/200
e) 190/200
5) Uma herança constituída de barras de ouro foi totalmente dividida entre três irmãs: Ana, Beatriz e Camile. Ana, por ser a mais velha, recebeu a metade das barras de ouro, e mais meia barra. Após Ana ter recebido sua parte, Beatriz recebeu a metade do que sobrou, e mais meia barra. Coube a Camile o restante da herança, igual a uma barra e meia. Assim, o número de barras de ouro que Ana recebeu foi:
a) 1
b) 2
c) 3
d) 4
e) 5
6) Chama-se tautologia a toda proposição que é sempre verdadeira, independentemente da verdade dos termos que a compõem. Um exemplo de tautologia é:
a) se João é alto, então João é alto ou Guilherme é gordo
b) se João é alto, então João é