Responsabilidade social
Um sistema de equações lineares (abreviadamente, sistema linear) é um conjunto finito de equações lineares aplicadas num mesmo conjunto, igualmente finito, de variáveis[1].
Deve-se observar que, em primeiro lugar, a equação linear é, necessariamente, uma equação polinomial. Em matemática pura, a teoria de sistemas lineares é um ramo da álgebra linear. Também na matemática aplicada, podemos encontrar vários usos dos sistemas lineares. Exemplos são a física, a economia, a engenharia, a biologia, a geografia, a navegação, a aviação, acartografia, a demografia, a astronomia
O sistema linear também pode ser conceituado como um sistema de equações do primeiro grau, ou seja, um sistema no qual as equações possuem apenas polinômios em que cada parcela tem apenas uma incógnita. Em outras palavras, num sistema linear, não há potência diferente de um ou zero tampouco pode haver multiplicação entre incógnitas.
Técnicas de resolução
Existem vários métodos equivalentes de resolução de sistemas.
Método da substituição
O método da substituição consiste em isolar uma incógnita em qualquer uma das equações, obtendo igualdade com um polinômio. Então deve-se substituir essa mesma incógnita em outra das equações pelo polinômio ao qual ela foi igualada.
Sistemas com duas equações
Um sistema com duas equações lineares se apresenta por:
Onde e são as incógnitas.
Para solucioná-lo por substituição, substituem-se as variáveis em suas equações por seus polinômios correspondentes:
Portanto:
Método da soma
O método da soma é o mais direto para se resolverem os sistemas, pois é uma forma simplificada de usar o método da substituição. Só é possível quando as equações são dispostas de forma que, ao subtrair ou somar os polinômios das equações, todas as incógnitas, exceto uma, se anulam. É mais simples e direto que o outro método
Sistemas com duas equações
Para solucionar um sistema como o apresentado a seguir por soma,