Regressão Linear
- Introdução
- Equação da Regressão Linear
- Cálculo dos fatores e
- Desenvolvimento
- Memorização / Intervalos de confiança.
Graficos
- Rigidez (Regime Elástico)
- Rigidez
- Tensão (Regime Elástico)
-Tensão
Introdução
Regressão linear Em estatística ou econometria, regressão linear é um método para se estimar a condicional (valor esperado) de uma variável y, dados os valores de algumas outras variáveis x.
A regressão, em geral, trata da questão de se estimar um valor condicional esperado. A regressão linear é chamada "linear" porque se considera que a relação da resposta às variáveis é uma função linear de alguns parâmetros. Os modelos de regressão que não são uma função linear dos parâmetros se chamam modelos de regressão não linear. Sendo uma das primeiras formas de análise regressiva a ser estudada rigorosamente, e usada extensamente em aplicações práticas. Isso acontece porque modelos que dependem de forma linear dos seus parâmetros desconhecidos, são mais fáceis de ajustar que os modelos não-lineares aos seus parâmetros, e porque as propriedades estatísticas dos estimadores resultantes são fáceis de determinar.
Equação da Regressão Linear
Para se estimar o valor esperado, usa-se de uma equação, que determina a relação entre ambas as variáveis.
Em que: - Variável explicada (dependente); é o valor que se quer atingir; - É uma constante, que representa a interceptação da reta com o eixo vertical; - É outra constante, que representa o declive(coeficiente angular)da reta; - Variável explicativa (independente), representa o fator explicativo na equação; - Variável que inclui todos os fatores residuais mais os possíveis erros de medição. O seu comportamento é aleatório, devido à natureza dos fatores que encerra. Para que essa fórmula possa ser aplicada, os erros devem satisfazer determinadas hipóteses, que