Redes neurais para banco de dados
Redes Neurais
Como mencionado na sessão anterior, redes neurais têm sido cada vez mais intensamente utilizadas em aplicações de data mining. Este fato deve-se não só a possibilidade de aplicação do paradigma em praticamente todas as diferentes estratégias de data mining mas também pela relativa simplicidade de uso das redes neurais quando comparadas às demais tecnologias. Existem várias ferramentas neurais oferecidas comercialmente, que são relativamente fáceis de serem usadas e que permitem o usuário final aplicar redes neurais a diversos problemas reais. O PRW – Pattern Recognition
Workbench é uma destas ferramentas, que descrevemos na próxima sessão e que será usada como suporte aos exercícios práticos preparados para este curso.
O Paradigma do modelo neural
Redes Neurais são sistemas computacionais formados pela integração de inúmeros elementos de processamento (EP), funcionalmente muito simples, altamente interconectados e trabalhando maciçamente em paralelo. Originalmente concebidas com base no estudo do cérebro humano, redes neurais são radicalmente diferentes de todos os demais modelos computacionais.
O paradigma neural não faz uso dos conceitos que até então caracterizam os demais algoritmos e sistemas computacionais. Uma rede neural pode ser integralmente implementada em Hardware, os chips neurais são objeto de intenso estudo em grandes centros de pesquisa e muito em breve serão realidade em muitas aplicações e produtos comerciais. No Japão é comum encontrar-se hoje eletrodomésticos sendo lançados com recursos de autocontrole, por eles chamados neuro-fuzzy (Sistemas híbridos combinando redes neurais e lógica nebulosa - fuzzy).
Numa rede neural não se tem a idéia de programa, onde o programador introduz e codifica a estratégia de solução do problema, também não se tem a idéia de um conhecimento explicitamente armazenado que conduza a busca durante o processo de resolução do