Quimica
Especial para a Página 3 Pedagogia & Comunicação
Para entender o conceito básico da geometria molecular, podemos partir de uma analogia bastante simples, com algumas observações do mundo macroscópico. Sempre que tentamos agrupar aleatoriamente objetos materiais sólidos de determinado formato, notamos que há uma relação direta entre o formato do objeto e o formato final do agrupamento.
Assim, quando jogamos esferas em uma caixa, por exemplo, elas tendem a deslizar umas sobre as outras e assumir uma configuração final organizada, adequada ao formato da caixa.
Se na mesma caixa jogarmos palitos de fósforo, teremos no final um empilhamento caótico, possivelmente uma pirâmide deformada, sem contornos definidos. Com as moléculas acontece coisa semelhante, só que acrescida de um fator que falta às esferas e fósforos do exemplo.
Elétrons e zonas de repulsão
Quando dois ou mais átomos se unem para formar uma molécula, suas eletrosferas entram em contato e o formato de seus orbitais (esféricos ou elípticos) influenciará o formato final da ligação. Só que, neste caso, o formato não é o único fator de influência, já que, ao contrário de nossas esferas e fósforos, as eletrosferas são compostas de elétrons, partículas eletricamente carregadas.
Como os elétrons têm carga negativa, se repelem entre si. Esta repulsão eletrostática influencia de modo definitivo a geometria molecular, ou seja, o formato do agrupamento de átomos que constitui a molécula. Este fator de influência das cargas elétricas negativas dos elétrons na disposição geométrica da molécula é chamado de zonas de repulsão.
Uma zona de repulsão se cria em torno de uma ligação molecular, ou seja, nas vizinhanças dos elétrons compartilhados pelos átomos que formam a molécula.
O efeito das zonas de repulsão tende a formar três disposições geométricas básicas em um molécula apolar (aquela na qual os elétrons não se concentram em pólos): a linear, a triangular plana e a