Produtos notaveis
1. O quadrado da soma de dois termos
Verifiquem a representação e utilização da propriedade da potenciação em seu desenvolvimento.
(a + b)2 = (a + b) . (a + b)
Onde a é o primeiro termo e b é o segundo.
Ao desenvolvermos esse produto, utilizando a propriedade distributiva da multiplicação, teremos:
O quadrado da soma de dois termos é igual ao quadrado do primeiro termo, mais duas vezes o produto do primeiro termo pelo segundo, mais o quadrado do segundo termo.
Exemplos
2. O quadrado da diferença de dois termos
Seguindo o critério do item anterior, temos:
(a - b)2 = (a - b) . (a - b)
Onde a é o primeiro termo e b é o segundo. Ao desenvolvermos esse produto, utilizando a propriedade distributiva da multiplicação, teremos:
O quadrado da diferença de dois termos é igual ao quadrado do primeiro termo, menos duas vezes o produto do primeiro termo pelo segundo, mais o quadrado do segundo termo.
Exemplos:
3. O produto da soma pela diferença de dois termos
Se tivermos o produto da soma pela diferença de dois termos, poderemos transformá-lo numa diferença de quadrados.
O produto da soma pela diferença de dois termos é igual ao quadrado do primeiro termo, menos o quadrado do segundo termo.
Exemplos
(4c + 3d).(4c – 3d) = (4c)2 – (3d)2 = 16c2 – 9d2
(x/2 + y).(x/2 – y) = (x/2)2 – y2 = x2/4 – y2
(m + n).(m – n) = m2 – n2
4. O cubo da soma de dois termos
Consideremos o caso a seguir:
(a + b)3 = (a + b).(a + b)2 → potência de mesma base.
(a + b).(a2 + 2ab + b2) → (a + b)2
Aplicando a propriedade distributiva como nos casos