probabilidade
A história da teoria das probabilidades, teve início com os jogos de cartas, dados e de roleta. Esse é o motivo da grande existência de exemplos de jogos de azar no estudo da probabilidade. A teoria da probabilidade estuda a "chances" de um determinado resultado acontecer. Experimento Aleatório É aquele experimento que quando repetido em iguais condições, podem fornecer resultados diferentes, ou seja, são resultados explicados ao acaso. Quando se fala de tempo e possibilidades de ganho na loteria, a abordagem envolve cálculo de experimento aleatório. Espaço Amostral É o conjunto de todos os resultados possíveis de um experimento aleatório. A letra que representa o espaço amostral, é S.
Conceito de probabilidade
Se em um fenômeno aleatório as possibilidades são igualmente prováveis, então a probabilidade de ocorrer um evento A é:
Por, exemplo, no lançamento de um dado, um número par pode ocorrer de 3 maneiras diferentes dentre 6 igualmente prováveis, portanto, P = 3/6= 1/2 = 50%
Dizemos que um espaço amostral S (finito) é equiprovável quando seus eventos elementares têm probabilidades iguais de ocorrência.
Num espaço amostral equiprovável S (finito), a probabilidade de ocorrência de um evento A é sempre:
Propriedades Importantes:
1. Se A e A’ são eventos complementares, então:
P( A ) + P( A' ) = 1
2. A probabilidade de um evento é sempre um número entre Æ (probabilidade de evento impossível) e 1 (probabilidade do evento certo).
Probabilidade Condicional Antes da realização de um experimento, é necessário que já tenha alguma informação sobre o evento que se deseja observar. Nesse caso, o espaço amostral se modifica e o evento tem a sua probabilidade de ocorrência alterada. Fórmula de Probabilidade Condicional P(E1 e E2 e E3 e ...e En-1 e En) é igual a P(E1).P(E2/E1).P(E3/E1 e E2)...P(En/E1 e E2 e ...En-1). Onde P(E2/E1) é a probabilidade de ocorrer E2,