Poliedros Regulares
Poliedros regulares Um poliedro convexo é chamado de regular se suas faces são polígonos regulares, cada um com o mesmo número de lados e, para todo vértice, converge um mesmo número de arestas. Existem cinco poliedros regulares:
Poliedro
Planificação
Elementos
Tetraedro
4 faces triangulares
4 vértices
6 arestas
Hexaedro
6 faces quadrangulares
8 vértices
12 arestas
Octaedro
8 faces triangulares
6 vértices
12 arestas
Dodecaedro
12 faces pentagonais
20 vértices
30 arestas
Icosaedro
20 faces triangulares
12 vértices
30 arestas
Relação de Euler Em todo poliedro convexo é válida a relação seguinte:
V - A + F = 2 em que V é o número de vértices, A é o número de arestas e F, o número de faces.
Observe os exemplos:
V=8 A=12 F=6
8 - 12 + 6 = 2
V = 12 A = 18 F = 8
12 - 18 + 8 = 2
Poliedros platônicos Diz-se que um poliedro é platônico se, e somente se:
a) for convexo;
b) em todo vértice concorrer o mesmo número de arestas;
c) toda face tiver o mesmo número de arestas;
d) for válida a relação de Euler. Assim, nas figuras acima, o primeiro poliedro é platônico e o segundo, não-platônico. Prismas Na figura abaixo, temos dois planos paralelos e distintos, , um polígono convexo R contido em e uma reta r que intercepta , mas não R:
Para cada ponto P da região R, vamos considerar o segmento , paralelo à reta r :
Assim, temos:
Chamamos de prisma ou prisma limitado o conjunto de todos os segmentos congruentes paralelos a r.
Elementos do prisma Dados o prisma a seguir, consideramos os seguintes elementos:
bases:as regiões poligonais R e S altura:a distância h entre os planos arestas das bases:os lados ( dos polígonos) arestas laterais:os segmentos faces laterais: os paralelogramos AA'BB', BB'C'C, CC'D'D, DD'E'E, EE'A'A
Classificação
Um prisma pode ser: reto: quando as arestas laterais