organograma
1) Adicionando um mesmo número a ambos os membros de uma equação, ou subtraindo um mesmo número de ambos os membros, a igualdade se mantém.
2) Dividindo ou multiplicando ambos os membros de uma equação por um mesmo número não-nulo, a igualdade se mantém.
Exemplo:
Vejamos alguns exemplos:
1) Seja a equação: 2) Seja a equação: 3) Seja a equação: Membros de uma equação
Numa equação a expressão situada à esquerda da igualdade é chamada de1º membro da equação, e a expressão situada à direita da igualdade, de 2º membro da equação.
Exemplo: - 3x + 12 = 2x - 9 1º membro 2º membro
Cada uma das parcelas que compõem um membro de uma equação é chamada termo da equação.
Exemplo: 4x – 9 = 1 – 2x
• Termos do 1º membro: 4x e 9
• Termos do 2º membro: 1 e -2x
Variável (ou incógnita) de uma equação:
Os elementos desconhecidos de uma equação são chamados de variáveis ou incógnitas.
Exemplos:
A equação x + 5 = 18 tem uma incógnita: x
A equação x – 3 = y + 2 tem duas incógnitas: x e y
A equação a² – 3b + c = 0 tem três incógnitas: a, b e c
Cada um dos valores que, colocados no lugar da incógnita, transformam a equação em uma sentença verdadeira é chamado de raiz da equação. Para verificarmos se um dado número é ou não raiz de uma equação, basta substituirmos a incógnita por esse número e observarmos se a sentença obtida é ou não verdadeira.
1º exemplo: verificar se 3 é raiz de 5x – 3 = 2x + 6
2º exemplo: verificar se -2 é raiz de x² – 3x = x – 6 O princípio aditivo e o princípio multiplicativo servem para facilitar o entendimento da solução de uma equação, mas para resolvê-la existe um método simples e prático que é o seguinte: