meus trabalhos
Para a entender a Função de 2º Grau - importante tema para o Enem -, acompanhe o seguinte raciocínio: na física, sabe-se que a trajetória de um projétil lançado obliquamente em relação ao solo horizontal é um arco de parábola com a concavidade voltada para baixo. Função Quadrática)
Adotando a origem O do sistema de eixos coordenados no ponto de lançamento, pode-se demonstrar que a altura atingida, num determinado instante, por esse projétil (ordenada y) e a distância alcançada, nesse mesmo instante, na horizontal (abscissa x) relacionam-se de acordo com a função definida pela sentença y = A.x2 + B.x, na qual A é uma constante que depende do ângulo de tiro, da velocidade vo de lançamento e da aceleração local da gravidade, e B é um valor constante que depende do ângulo do tiro. Tal função descrita acima é uma função polinomial do 2º grau ou também conhecida como função quadrática. Esta função tem aplicação em diversos cálculos.
DEFINIÇÃO
Função Polinomial do 2º Grau ou Função Quadrática é a função real definida por: f(x) = ax2 + bx + c, onde a, b e c são coeficientes reais, sendo a ≠ 0.
Vejamos alguns exemplos de função quadrática:
a) y = x2 – 5x + 6, na qual a = 1, b = -5 e c = 6
b) y = - x2 + x + 4, na qual a = - 1, b = 1 e c = 4
c) y = 3x2 – 4x, na qual a = 3, b = -4 e c = 0
d) y = 2x2 – 1, na qual a = 2, b = 0 e c = -1
PROPRIEDADES GRÁFICAS
O gráfico da Função Polinomial do 2º Grau y = ax2 + bx + c é uma parábola cujo eixo de simetria é uma reta vertical, paralela ao eixo y ou até mesmo o próprio eixo y, passando pelo vértice da parábola.
Função Quadrática (Foto: Colégio Qi)
Observe que o eixo de simetria intercepta o eixo x (eixo das abscissas) num ponto equidistante das raízes, além de interceptar a parábola em seu ponto de máximo ou em seu ponto de mínimo. A parábola terá ponto de máximo ou de mínimo de acordo com a sua concavidade. Observe isso atentamente agora.
Concavidade da parábola
A parábola pode ter a