marketing
a) A quantidade inicial administrada.
b) A taxa de decaimento diária.
c) A quantidade de insumo presente 3 dias após a aplicação.
d) O tempo necessário para que seja completamente eliminado.
Respostas:
A) A quantidade inicial seria quando o tempo for 0 Q (t)=250.(0,6)^0 (o marco zero, o tempo inicial) que no caso é 250 mg.
B) a taxa de decaimento diária é 0,6 que é 60% por dia.
C) seria 250*(0,6)³ que é 250*0,216 que é 54 mg.
D) Ele nunca vai ser totalmente eliminado pois como função exponencial o X nunca vai ser 0 (no caso o Q(t) vai ser sempre Q. Qualquer coisa elevado a zero diferente e zero é um!
Sabe-se que o comportamento da quantidade de um determinado insumo, quando ministrado a uma muda, no instante t, é representado pela função Q(t) = 250.(0,6)t (elevado a t) , onde Q representa a quantidade (em mg) e t o tempo (em dias).
a) A quantidade inicial administrada.
b) A taxa de decaimento diária.
c) A quantidade de insumo presente 3 dias após a aplicação.
d) O tempo necessário para que seja completamente eliminado.
Respostas:
A) A quantidade inicial seria quando o tempo for 0 Q (t)=250.(0,6)^0 (o marco zero, o tempo inicial) que no caso é 250 mg.
B) a taxa de decaimento diária é 0,6 que é 60% por dia.
C) seria 250*(0,6)³ que é 250*0,216 que é 54 mg.
D) Ele nunca vai ser totalmente eliminado pois como função exponencial o X nunca vai ser 0 (no caso o Q(t) vai ser sempre Q. Qualquer coisa elevado a zero diferente e zero é um!