Definição A Lógica Fuzzy pode ser definida como uma ferramenta capaz de capturar informações vagas, em geral descritas em uma linguagem natural e convertê-las para um formato numérico, de fácil manipulação pelos computadores de hoje em dia. Considere a seguinte afirmativa: Se o tempo de um investimento é longo e o sistema financeiro tem sido não muito estável, então a taxa de risco do investimento é muito alta. Os termos "longo", "não muito estável" e "muito alta" trazem consigo informações vagas. A extração (representação) destas informações vagas se dá através do uso de conjuntos nebulosos. Devido a esta propriedade e a capacidade de realizar dedução, a Lógica Fuzzy tem encontrado grandes aplicações nas seguintes áreas: Sistemas Especialistas; Computação com Palavras; Raciocínio Aproximado; Linguagem Natural; Controle de Processos; Robótica; Modelamento de Sistemas Parcialmente Abertos; Reconhecimento de Padrões; Processos de Tomada de Decisão (decision making). A Lógica Fuzzy ou Lógica Nebulosa, também pode ser definida , como a lógica que suporta os modos de raciocínio que são aproximados, ao invés de exatos, como estamos naturalmente acostumados a trabalhar. Ela está baseada na teoria dos conjuntos nebulosos e difere dos sistemas lógicos tradicionais em suas características e detalhes. Nesta lógica, o raciocínio exato corresponde a um caso limite do raciocínio aproximado, sendo interpretado como um processo de composição nebulosa. A lógica em questão foi desenvolvida por Lofti A. Zadeh da Universidade da Califórnia em Berkeley na década de 60 e combina lógica multivalorada, teoria probabilística, inteligência artificial e redes neurais para que possa representar o pensamento humano, ou seja, ligar a linguística e a inteligência humana, pois muitos conceitos são melhores definidos por palavras do que pela matemática.
Funcionamento
A característica especial da lógica fuzzy (também referida como lógica nebulosa e em alguns casos por Teoria das