ligação metalica
Num sólido, os átomos estão dispostos de maneira variada, mas sempre próximos uns aos outros, compondo um retículo cristalino. Enquanto certos corpos apresentam os elétrons bem presos aos átomos, em outros, algumas dessas partículas permanecem com certa liberdapde de se movimentarem no cristal. É o que diferencia, em termos de condutibilidade elétricppa, os corpos condutores dos isolantes. Nos corpos condutores, muitos dos elétrons se movimentam livremente no cristal, de forma desordenada, isto é, em todas as direções. E, justamente por ser caótico, esse movimento não resulta em qualquer deslocamento de carga de um lado a outro do cristal.
Aquecendo-se a ponta de uma barra de metal, colocam-se em agitação os átomos que a formam e os que lhe estão próximos. Os elétrons aumentam suas oscilações e a energia se propaga aos átomos mais internos. Neste tipo de cristal os elétrons livres servem de meio de propagação do calor - chocam-se com os átomos mais velozes, aceleram-se e vão aumentar a oscilação dos mais lentos. A possibilidade de melhor condutividade térmica, portanto, depende da presença de elétrons livres no cristal. Estudando-se o fenômeno da condutibilidade elétrica, nota-se que, quando é aplicada uma diferença de potencial, por meio de uma fonte elétrica às paredes de um cristal metálico, os elétrons livres adquirem um movimento ordenado: passam a mover-se do pólo negativo para o pólo positivo, formando um fluxo eletrônico orientado na superfície do metal, pois como se trabalha com cargas de mesmo sinal, estas procuram a maior distância possível entre elas. Quanto mais elétrons livres no condutor, melhor a condução se dá.
Os átomos de um metal têm grande tendência a perder elétrons da última camada e transformar-se em cátions. Esses elétrons, entretanto, são simultaneamente atraídos por outros íons, que então o perdem novamente e assim por diante. Por isso, apesar de predominarem íons positivos e elétrons livres, diz-se que os átomos de