História da integral
As contribuições dos matemáticos para o nascimento do Cálculo são inúmeras. Muitos deles, mesmo que de forma imprecisa ou não rigorosa, já utilizavam conceitos do Cálculo para resolver vários problemas como por exemplo, Cavalieri, Barrow, Fermat e Kleper. Neste tempo ainda não havia uma sistematização, no sentido de uma construção logicamente estruturada.
A união das partes conhecidas e utilizadas até então, aliada ao desenvolvimento e aperfeiçoamento das técnicas, aconteceu com Newton e Leibniz, que deram origem aos fundamentos mais importantes do Cálculo: as derivadas e as integrais. Assim podemos dividir o Cálculo em duas partes; uma relacionada às derivadas ou cálculo diferencial e outra parte relacionada as integrais ou cálculo integral.
O Cálculo Diferencial e Integral é uma parte importante da matemática que trata da variação, de movimento e de quantidades que mudam, tendendo a outras quantidades. É uma das grandes realizações do intelecto humano. Inspirados por problemas de astronomia, Newton e Leibniz, desenvolveram as idéias do cálculo, há 300 anos. Desde então, cada século vem demonstrando o poder do cálculo, ao iluminar questões da matemática, das ciências físicas, engenharia e ciências sociais e biológicas.
A derivada e a integral são duas noções básicas do Cálculo Diferencial e Integral. Do ponto de vista geométrico, a derivada está ligada ao problema de traçar a tangente a uma curva enquanto que a integral está relacionada com o problema de determinar a área de certas figuras planas, mas também possui muitas outras interpretações possíveis. Na realidade, a grande descoberta de Newton e de Leibniz foi que a Matemática, além de lidar com grandezas, é capaz de lidar com a variação das mesmas.
Os primeiros problemas que aparecem na História relacionado com as integrais são os problemas de quadratura. Um dos problemas mais antigos enfrentados pêlos gregos foi a medição de superfícies a fim de encontrar suas áreas. Quando os