Gráfico de função do 1º grau
Quando a > 0
Isso significa que a será positivo. Por exemplo, dada a função: f(x) = 2x – 1 ou y = 2x - 1, onde a = 2 e b = -1. Para construirmos seu gráfico devemos atribuir valores reais para x, para que possamos achar os valores correspondentes em y.
x y
- 2 - 5
- 1 - 3
0 - 1
1 / 2 0 1 1
Podemos observar que conforme o valor de x aumenta o valor de y também aumenta, então dizemos que quando a > 0 a função é crescente.
Com os valores de x e y formamos as coordenadas, que são pares ordenados que colocamos no plano cartesiano para formar a reta. Veja:
No eixo vertical colocamos os valores de y e no eixo horizontal colocamos os valores de x.
Quando a < 0
Isso indica que a será negativo. Por exemplo, dada a função f(x) = - x + 1 ou y = - x + 1, onde a = -1 e b = 1. Para construirmos seu gráfico devemos atribuir valores reais para x, para que possamos achar os valores correspondentes em y.
x y
-2 3
-1 2
0 1
1 0
Podemos observar que conforme o valor de x aumenta o valor de y diminui, então dizemos que quando a < 0 a função é decrescente.
Com os valores de x e y formamos as coordenadas que são pares ordenados que colocamos no plano cartesiano para formar a reta. Veja:
No eixo vertical colocamos os valores de y e no eixo horizontal colocamos os valores de x.
Características de um gráfico de uma função do 1º grau.
• Com a > 0 o gráfico será crescente.
• Com a < 0 o gráfico será decrescente.
• O ângulo α formado com a reta e com o eixo x será agudo (menor que 90°) quando a > 0.
• O ângulo α formado com reta e com o eixo x será obtuso (maior que 90º) quando a < 0.
• Na construção de um gráfico de uma função do 1º grau basta indicar apenas dois