Função do 1º grau
Então, podemos dizer que a definição de função do 1º grau é:
f: R→ R definida por f(x) = ax + b, com a R* e b R.
Veja alguns exemplos de Função afim.
f(x) = 2x + 1 ; a = 2 e b = 1
f(x) = - 5x – 1 ; a = -5 e b = -1
f(x) = x ; a = 1 e b = 0
f(x) = - 1 x + 5 ; a = -1 e b = 5 2 2
Toda função a do 1º grau também terá domínio, imagem e contradomínio.
A função do 1º grau f(x) = 2x – 3 pode ser representada por y = 2x – 3. Para acharmos o seu domínio e contradomínio, devemos em primeiro estipular valores para x.
Vamos dizer que x = -2 ; -1 ; 0 ; 1. Para cada valor de x teremos um valor em y, veja:
x = -2 x = - 1 x = 0 y = 2 . (-2) – 3 y = 2 . (-1) – 3 y = 2 . 0 - 3 y = - 4 – 3 y = -2 – 3 y = -3 y = - 7 y = - 5
x = 1 y = 2 . 1 – 3 y = 2 – 3 y = -1
Toda função pode ser representada graficamente, e a função do 1º grau é formada por uma reta. Essa reta pode ser crescente ou decrescente, dependendo do sinal de a.
Quando a > 0
Isso significa que a será positivo. Por exemplo, dada a função: f(x) = 2x – 1 ou y = 2x - 1, onde a = 2 e b = -1. Para construirmos seu gráfico devemos atribuir valores reais para x, para que possamos achar os valores correspondentes em y.
x y
- 2 - 5
- 1 - 3
0 - 1
1 / 2 0 1 1
Podemos observar que conforme o valor de x aumenta o valor de y também aumenta, então dizemos que quando a > 0 a função é crescente.
Com os valores de x e y