Geometria espacial
Geometria Espacial é o estudo da geometria no espaço, em que estudamos as figuras que possuem mais de duas dimensões. Essas figuras recebem o nome de sólidos geométricos ou figuras geométricas espaciais e são conhecidas como: prisma (cubo, paralelepípedo), pirâmides, cone, cilindro, esfera.
Se observarmos cada figura citada acima, iremos perceber que cada uma tem a sua forma representada em algum objeto na nossa realidade, como:
Prisma: caixa de sapato, caixa de fósforos.
Cone: casquinha de sorvete.
Cilindro: cano PVC, canudo.
Esfera: bola de isopor, bola de futebol.
Essas figuras ocupam um lugar no espaço, então a geometria espacial é responsável pelo cálculo do volume (medida do espaço ocupado por um sólido) dessas figuras e o estudo das estruturas das figuras espaciais.
Prismas Na figura abaixo, temos dois planos paralelos e distintos, , um polígono convexo R contido em e uma reta r que intercepta , mas não R:
Para cada ponto P da região R, vamos considerar o segmento , paralelo à reta r :
Assim, temos:
Chamamos de prisma ou prisma limitado o conjunto de todos os segmentos congruentes paralelos a r.
Pirâmides
Dados um polígono convexo R, contido em um plano , e um ponto V ( vértice) fora de , chamamos de pirâmide o conjunto de todos os segmentos .
Elementos da pirâmide Dada a pirâmide a seguir, temos os seguintes elementos:
base: o polígono convexo R arestas da base: os lados do polígono arestas laterais: os segmentos faces laterais: os triângulos VAB, VBC, VCD, VDE, VEA altura: distância h do ponto V ao plano Classificação Uma pirâmide é reta quando a projeção ortogonal do vértice coincide com o centro do polígono da base. Toda pirâmide reta, cujo polígono da base é regular, recebe o nome de pirâmide regular. Ela pode ser triangular, quadrangular, pentagonal etc., conforme sua base seja,