Geometria espacial (matemática)
Geometria Espacial é o estudo da geometria no espaço, em que estudamos as figuras que possuem mais de duas dimensões. Essas figuras recebem o nome de sólidos geométricos ou figuras geométricas espaciais e são conhecidas como: prisma (cubo, paralelepípedo), pirâmides, cone, cilindro, esfera.
Essas figuras ocupam um lugar no espaço, então a geometria espacial é responsável pelo cálculo do volume (medida do espaço ocupado por um sólido) dessas figuras e o estudo das estruturas das figuras espaciais. http://www.brasilescola.com/matematica/geometria-espacial.htm ESFERA
Esfera: inúmeras utilidades no mundo moderno
A esfera é obtida através da revolução da semicircunferência sobre um eixo. Podemos considerar que a esfera é um sólido.
Alguns conceitos básicos estão relacionados à esfera, se considerarmos a superfície esférica destacamos os seguintes elementos básicos:
Pólos Equador Paralelo Meridiano
Área de uma superfície esférica
Temos que a área de uma superfície esférica de raio r é igual a:
Volume da esfera
Por ser considerada um sólido geométrico, a esfera possui volume representado pela seguinte equação:
Posição relativa entre plano e esfera
Plano secante à esfera
O plano intersecciona a esfera formando duas partes, se o plano corta a esfera passando pelo centro temos duas partes de tamanhos iguais.
Plano tangente à esfera
O plano tangencia a esfera em apenas um ponto, formando um ângulo de 90º graus com o eixo de simetria.
Plano externo à esfera
O plano e a esfera não possuem pontos em comum.
A esfera possui inúmeras aplicações, como exemplo podemos citar a Óptica (Física), a seção de uma esfera forma uma lente esférica, que são objetos importantes na construção de óculos. Corpos esféricos possuem grande importância na Engenharia Mecânica, a parte interior de inúmeras peças capazes de realizar movimentos circulares sobre eixos é constituída de esferas de aço. Um