geometri
No caso do desconto simples “por fora”, a taxa de desconto incide somente sobre o valor futuro dos títulos, tantas vezes, quantos forem os períodos unitários, ou seja, D = S x d x n. Como P = S - D, deduz-se que P = S.(1 - d x n).
Já no caso do desconto composto, para n períodos unitários, a taxa de desconto incide, no primeiro período, sobre o valor do título; no segundo período, sobre o valor futuro do título menos o valor de desconto correspondente ao primeiro período; no terceiro período sobre o valor futuro do título menos os valores dos descontos referentes ao primeiro e ao segundo período, e assim sucessivamente até o enésimo período, de forma que:
P1 = S - D ou P = S(1 - d)
P2 = S(1-d)(1-d) = S(1-d)2
P3 = S(1-d)(1-d)(1-d)= S(1-d)3
. .
. .
Pn = S (1-d)n
Assim o valor líquido de um título, de prazo igual a n períodos unitários que sofre um desconto composto “por fora”, é dado pela expressão:
P = S(1-d)n
Exemplos:
1 - Uma taxa de 2,5% ao mês, de acordo com o conceito de desconto composto “por fora”. Calcular o valor do desconto.
Dados:
S = 28.800,00 n = 120 dias = 4 meses d = 2,5% ao mês
D = ?
Solução:
P = S(1-d)n
P = 28.800,00(1-0,025)4 = 28.800,00 x 0,903688 = 26.026,21
D = S - P = 28.800,00 - 26.026,21 = 2.773,79
HP12C = 28.800,00 E 2,5 E 100 : 1 – 4 YX X 28.800,00 - = 2,773,79
2 - Um título, com 90 dias a vencer, foi descontado à taxa de 3% ao mês, produzindo um desconto no valor de R$ 1.379,77. Calcular o valor nominal do título.
Dados:
D = 1.379,77 d = 3% ao mês n = 90 dias ou 3 meses
S = ?
Solução:
D = S - P = S - S(1-d)n = S [1-(1-d)n]
D = S [1-(1-d)n]
1.379,77 = S [ 1 - (1 - 0,03)3]
1.379,77 = S [ 1 - 0,912673]
1.379,77 = S x 0,087327
S = 1.379,77/0,087327 = 15.800,00
HP12C = 1E 0,03-3 YX 1- CHS 1/x 1.379,77 X = 15.800,00