Função Linear
ETAPA Nº 1 _
Situação-problema 1: O valor da conta de água é dado por uma tarifa fixa, mais uma parte que varia de acordo com o volume, em metros cúbicos utilizados, caso exceda o volume considerado na tarifa fixa. O valor da tarifa fixa é de R$ 13,00 e a cada metro cúbico excedente acrescenta R$1,90 no valor da conta.
Passo 1
Faça a leitura do capítulo 1 – seção 1.1 do PLT e demonstre através da situação problema 1 o conceito de função linear. Escreva a equação para o custo total de água, em reais, de uma residência em função da quantidade de água utilizada, em metros cúbicos e interprete os resultados.
Função Linear: Uma função é linear se seu coeficiente angular, ou taxa de variação, é a mesma em todos os pontos. A taxa de variação de uma função que não é linear pode variar de ponto a ponto.
Y= Ax + B
Y= F(x) = b + mx
Y= F (t)
Considerando os seguintes volumes: 1 m³, 2 m³, 3 m³, 4 m³, 5 m³, 6 m³, 7 m³, 8 m³, 9 m³ e 10m³, teremos:
Y = f(t)
Y = 1,9 . t + 13 Y = 1,9 . 1 + 13 Y = R$ 14,90
Y = 1,9 . t + 13 Y = 1,9 . 2 + 13 Y = R$ 16,80
Y = 1,9 . t + 13 Y = 1,9 . 3 + 13 Y = R$ 18,70
Y = 1,9 . t + 13 Y = 1,9 . 4 + 13 Y = R$ 20,60
Y = 1,9 . t + 13 Y = 1,9 . 5 + 13 Y = R$ 22,50
Y = 1,9 . t + 13 Y = 1,9 . 6 + 13 Y = R$ 24,40
Y = 1,9 . t + 13 Y = 1,9 . 7 + 13 Y = R$ 26,30
Y = 1,9 . t + 13 Y = 1,9 . 8 + 13 Y = R$ 28,20
Y = 1,9 . t + 13 Y = 1,9 . 9 + 13 Y = R$ 30,10
Y = 1,9 . t + 13 Y = 1,9 .10 + 13 Y = R$ 32,00
Passo 2
Demonstre que o coeficiente angular de uma função linear y=f(t) pode ser calculado a partir de valores da função em dois pontos, descrita no Passo 1.
m = F (x2) – F (x1) x2 - x1
Para a função de dois pontos 1m³ e 3m³:
m = F (x2) – F (x1) => m = F (22,50) – F (14,90) = 7,6 = 1,90 x2 - x1