Fun O Quadr Tica
1. f(x) = 3x2 - 4x + 1, onde a = 3, b = - 4 e c = 1
2. f(x) = x2 -1, onde a = 1, b = 0 e c = -1
3. f(x) = 2x2 + 3x + 5, onde a = 2, b = 3 e c = 5
4. f(x) = - x2 + 8x, onde a = -1, b = 8 e c = 0
5. f(x) = -4x2, onde a = - 4, b = 0 e c = 0 Gráfico O gráfico de uma função polinomial do 2º grau, y = ax2 + bx + c, com a 0, é uma curva chamada parábola.
Exemplo:
Vamos construir o gráfico da função y = x2 + x: Primeiro atribuímos a x alguns valores, depois calculamos o valor correspondente de y e, em seguida, ligamos os pontos assim obtidos. x y
-3
6
-2
2
-1
0
0
0
1
2
2
6
Observação: Ao construir o gráfico de uma função quadrática y = ax2 + bx + c, notaremos sempre que: se a > 0, a parábola tem a concavidade voltada para cima; se a < 0, a parábola tem a concavidade voltada para baixo;
Condições
a > 0, parábola com a concavidade voltada para cima. a < 0, parábola com a concavidade voltada para baixo.
∆ > 0, a parábola intercepta o eixo das abscissas em dois pontos.
∆ = 0, a parábola intercepta o eixo das abscissas somente em um ponto.
∆ < 0, a parábola não intercepta o eixo das abscissas.
∆ > 0
∆ = 0
∆ < 0
Observe algumas funções do 2º grau e seus respectivos gráficos.
Exemplo 1
f(x) = x² – 2x – 3
Exemplo 2
f(x) = –x² + 4x – 3
Exemplo 3
f(x) = 2x² – 2x + 1
Exemplo 4
f(x) = –x² – 2x – 3
Ao construir o gráfico de uma função quadrática y = ax2 + bx + c, notaremos sempre que: se a > 0, a parábola tem a concavidade voltada para cima; se a < 0, a parábola tem a concavidade voltada para baixo; Zero e Equação do 2º Grau Chama-se zeros ou raízes da função polinomial do 2º grau f(x) = ax2 + bx + c , a 0, os números reais x tais que f(x)