Exercício de Logica
1- PAGINA 21 Dada as expressões algébricas dos circuitos desenhados
1G) -
a
b
a’
b
a’ b’ ( a . b ) + ( a’ . b ) + ( a’. b )
1H-
a
b
d
c
a
b
b
d
c
c
b
d
{ ( a . b ) + ( c . a)} . ( d + b ) + ( b + c ) . { ( d . c) + ( b . d )}}
1L)
a
b’
c
a’
b
c
a
b’
c
a’
b
c
a
b
c’
a’
b’
c
{ ( a . b ’. c ) + ( a’ . b. c )} + (a . b’ . c ) + ( a’ . b . c)} + {(a . b . c’) + ( a’ . b’ .c)}
1J)
a
b
c
a’
b
c’
a
b’
c
a’
b
c
( a . b . c ) + ( a . b . c’ ) + ( a . b’ . c) + ( a’ . b . c )
2G)
( p + g ) . ( p + g’ + r’ ) p p g’ g
r’
2H)
(a + b . c) . (a’ . b’ + c’ ) + a’ . b’ . c’ a a’ c b
b’ c’ a’ b’ c’
P26) Desenhar os diagramas de Euler-Venn para mostrar
1e- ( p’ + g’ ) . r p’ + rg’
1f) (p + g ) . r rp + rg
9 - P g 37) v (p) = v (g) = 1 e v (r) = v (s) = 0 determine os valores lógicos das seguintes proposições: a) p’ + r = Resposta ( 1 ) + ( 0 ) = 0 + 0 =0
b) [ p + ( p
s )] = Resposta [ 1 + ( 1
0 )] = [ 1 + 0 ]
c) [ p’ + ( r . s )’ ] = Resposta [ ( 1 )’ + ( 0 . 0 )’ ] = [ 0 + 1 ] = 1
d) [ q
( p’ . s ) ]’ = Resposta [ 1
e) { p
q}+{q
f) ( p
q ) . ( r’
(1’ . 0 ) ]’ = [ 1
p’ } =Resposta { 1
0 ]’ = [ 0 ]’ = 1
1}+{1
s ) = Resposta ( 1
0}={1}+{0}=1
1) . ( 1
0)=(1).(0)=0
g) {[ q’ . ( p . s’ )]’}’ Resposta {[ 0 . ( 1 . 1 )]’}’ = {[ 0 . 1 ]’}’ = { 1 }’ = 0
h) P’ + [q . ( r
s’ )] = Resposta 0 + [ 1 . ( 0
1 )] = 0 + [ 1 . 1 ] = 0 + 1 = 1
Pg 43
a) ( p . q’ )’ p 0
0
1
1
b) ( p
q’
1
0
1
0
p. q’
0
0
1
0
p
(p . q’ )’
1
1
0
1
q’
q’ )’ p 0
0
1
1
d) p’
q
0
1
0
1
(q
q
0
1
0
1
q’
1
0
1
0
p
1
1
1
0
q’ )’
0
0
0
1
p) p 0
0
1
1
q
0
1
0
1
p’
1
1
0
0
q
p
1
0
1
1
(p’
(q
1
0
1
1
p)
e) ( p
q)
p.q