Estudos

707 palavras 3 páginas
Resumo de Geometria Analítica – Parte I  Sistema cartesiano ortogonal
É constituído por duas retas, x e y, perpendiculares entre si.

Pré/3º Ano

Em que: - A reta x é chamada eixo das abscissas; - A reta y é a chamada eixo das ordenadas; - O ponto O é chamado origem; - O número a é denominado abscissa de P; - O número real b é denominado ordenada de P; - O par ordenado (a, b) representa as coordenadas de P.

 Distância entre dois pontos
A distância entre dois pontos A e B de coordenadas a e b, respectivamente é dado por: d(A,B)  b  a

Em que d(A, B) é a distância entre A e B. O número real não-negativo d(A,B) é denominado, também, comprimento do segmento AB.

 Distância entre dois pontos no plano
A distância entre os pontos A  x A , y A  e B  xB , yB  é dada por:

d(A,B) 

 xB  x A 

2

  yB  y A 

2

profalexandreassis@hotmail.com

1

Resumo de Geometria Analítica – Parte I  Ponto Médio de um segmento
O ponto médio do segmento AB, sendo A  x A , y A  e B  xB , yB  é dado por:

Pré/3º Ano

 x  xB y A  yB  M  xM , y M   M  A ,  2 2  

 Coordenadas do baricentro de um triângulo
O baricentro de um triângulo ABC de coordenadas A  x A , y A  , B  xB , yB  e C  xC , yC  é dado por:

 x  xB  x C y A  y A  y A  G  xG , yG   G  A ,  3 3  

 Alinhamento de três pontos
Sejam os pontos da figura:

A  x A , y A  xA   B  xB , yB   D  xB  xC C  xC , y C  

yA yB yC

1 1 1

-D=0 -D 0

A, B e C são colineares, isto é, estão alinhados. A, B e C são os vértices de um triângulo.

profalexandreassis@hotmail.com

2

Resumo de Geometria Analítica – Parte I  Estudo da reta
(i) Equação geral

Pré/3º Ano

x xA xB

y yA yB

1 1  ax  by  c  0 1

Em que:

a  y A  yB  b  x A  xB c  x y  x y A A B B 
Observações:

c  a  0  y   b reta horizontal  c  reta vertical ` b  0  y   a  c  0  ax  by  0 reta passa pela origem 

Relacionados

  • Estudos
    458 palavras | 2 páginas
  • Estudos
    1301 palavras | 6 páginas
  • Estudo
    500 palavras | 2 páginas
  • estudo
    468 palavras | 2 páginas
  • estudos
    3560 palavras | 15 páginas
  • estudo
    3577 palavras | 15 páginas
  • Estudo
    832 palavras | 4 páginas
  • Estudos
    1252 palavras | 6 páginas
  • Estudos
    1886 palavras | 8 páginas
  • Estudo
    1426 palavras | 6 páginas