Estatistica
$lim_{h \to 0} \frac{(x + h)^3 - x^3}{h}$
$lim_{h \to 0} \frac{x^3 + 3x^2h ++3xh^2 +h^3 - x^3}{h}$
$lim_{h \to 0} \frac{3x^2 + 3hx +h^3}{h}$
$3x^2$
\newline
205 -
$lim_{x \to 1} \frac{\sqrt{x}-1}{\sqrt[3]{x} - 1}$
$lim_{x \to 1} \frac{\sqrt{x}-1}{\sqrt[3]{x} - 1}*\frac{\sqrt{x}+1}{\sqrt[3]{x} + 1}*\frac{\sqrt[3]{x^2} + \sqrt[3]{x} + 1}{\sqrt[3]{x^2} + \sqrt[3]{x} + 1}$
$lim_{x \to 1} \frac{(x+1)(\sqrt[3]{x^2} + \sqrt[3]{x} + 1)}{(x+1)(\sqrt{x} + 1)}$
$\frac{3}{2}$
\newline
214 -
$lim_{x \to \infty} x(\sqrt{x^2+1} - x)$
$lim_{x \to \infty} \frac {(x)(\sqrt{x^2+1} - x)(\sqrt{x^2+1} + x)}{(\sqrt{x^2+1} + x)}$
$lim_{x \to \infty} \frac {(x)(x^2+1-x^2)}{(\sqrt{x^2+1} + x)}$
$lim_{x \to \infty} \frac {1}{(\sqrt{x^2+1} + x)}$
$lim_{x \to \infty} \frac {1}{\sqrt{1+\frac{1}{x^2}}}$
$\frac{1}{2}$
\newline
219 -
$\lim_{x \to 1} \frac{\sin x}{\sin(3\pi x)}$
$\pi x = y$
$\lim_{x \to \pi } \frac{\sin (y)}{\sin (3y)}$
$\lim_{x \to \pi } \frac{\sin (y)}{3\sin (y) \cos^2 (y) - \sin (2y)}$
$\lim_{x \to \pi } \frac{1}{3\cos^2 (y) - \sin^2 (y)}$
$\frac{1}{3}$
\newline
226 -
$\lim_{x \to \frac{\pi}{4} } \frac{\sin (x) - \cos (x)}{1- \tan(x)}$
$\lim_{x \to \frac{\pi}{4} } \frac{\sin (x) - \cos (x)}{\frac{\sin (x) - \cos (x)}{\cos(x)}}$
$\lim_{x \to \frac{\pi}{4} } -\cos(x)$
$-\frac{\sqrt{2}}{2}$
\newline
240 -
$\lim_{x \to 0} \frac{\sqrt{1+\sin(x)} - \sqrt{1-\sin(x)}}{x}$
$\lim_{x \to 0} \frac{\sqrt{1+\sin(x)} - \sqrt{1-\sin(x)}}{x}*\frac{\sqrt{1+\sin(x)} + \sqrt{1-\sin(x)}}{x}$
$\lim_{x \to 0} \frac{2\sin(x)}{(\sqrt{1+\sin(x)} + \sqrt{1-\sin(x)})x}$
$\frac{2}{2}$