Equivalencia logica
Definição
Há equivalência entre as proposições P e Q somente quando a bicondicional P ↔ Q for uma tautologia ou quando P e Q tiverem a mesma tabela-verdade. P ⇔ Q (P é equivalente a Q) é o símbolo que representa a equivalência lógica.
Diferenciação dos símbolos ↔ e ⇔
O símbolo ↔ representa uma operação entre as proposições P e Q, que tem como resultado uma nova proposição P ↔ Q com valor lógico V ou F.
O símbolo ⇔ representa a não ocorrência de VF e de FV na tabela-verdade P ↔ Q, ou ainda que o valor lógico de P ↔ Q é sempre V, ou então P ↔ Q é uma tautologia.
Exemplo
A tabela da bicondicional (p → q) ↔ (~q → ~p) será:
Portanto, p → q é equivalente a ~q → ~p, pois estas proposições possuem a mesma tabela-verdade ou a bicondicional (p → q) ↔ (~q → ~p) é uma tautologia.
Veja a representação:
(p → q) ⇔ (~q → ~p)
Implicação lógica
Definição
A proposição P implica a proposição Q, quando a condicional P → Q for uma tautologia.
O símbolo P ⇒ Q (P implica Q) representa a implicação lógica.
Diferenciação dos símbolos → e ⇒
O símbolo → representa uma operação matemática entre as proposições P e Q que tem como resultado a proposição P → Q, com valor lógico V ou F.
O símbolo ⇒ representa a não ocorrência de VF na tabela-verdade de P → Q, ou ainda que o valor lógico da condicional P → Q será sempre V, ou então que P → Q é uma tautologia.
Exemplo
A tabela-verdade da condicional (p Λ q) → (p ↔ q) será:
Portanto, (p Λ q) → (p ↔ q) é uma tautologia, por isso (p Λ q) ⇒ (p ↔q)
http://www.colegioweb.com.br/trabalhos-escolares/matematica/nocoes-de-logica/implicacao-logica.html
http://www.colegioweb.com.br/trabalhos-escolares/matematica/nocoes-de-logica/equivalencia-logica.html