Entidades Escalares e Entidades Vectoriais
281495510350500
Disciplina: Tópicos de Fisica Elementar
Índice TOC \o "1-3" \h \z \u Introdução PAGEREF _Toc401183798 \h 3Entidades escalares PAGEREF _Toc401183799 \h 4Operações com entidades escalares PAGEREF _Toc401183800 \h 5A adição PAGEREF _Toc401183801 \h 5A subtracção PAGEREF _Toc401183802 \h 7A multiplicação PAGEREF _Toc401183803 \h 8A divisão PAGEREF _Toc401183804 \h 9Exemplos de entidades escalares PAGEREF _Toc401183805 \h 10Entidades vectoriais PAGEREF _Toc401183806 \h 11Adição de vectores PAGEREF _Toc401183807 \h 13Subtracção de vectores PAGEREF _Toc401183808 \h 15Multiplicação por um escalar PAGEREF _Toc401183809 \h 16Produto interno de vectores PAGEREF _Toc401183810 \h 18Bibliografia e Webgrafia PAGEREF _Toc401183811 \h 21
Introdução
Desde os primórdios da humanidade até aos tempos modernos, os números sempre foram algo essencial para determinar o mais básico até ao mais ínfimo pormenor. Sem números, seria impossível determinar coisas tão elementares como o tempo, distâncias, quantidades, velocidades, áreas, entre muitas outras.
No presente trabalho explora-se a diferença entre entidades escalares e entidades vectoriais. Como surgiram, quais as suas características e aplicações, o modo de se trabalhar com cada uma destas entidades são alguns dos tópicos abordados.
Entidades escalaresTodos os dias são utilizadas grandezas físicas. Existem grandezas que são definidas apenas com um valor numérico e a sua unidade de medida. A essas grandezas dá-se o nome de entidades escalares, ou seja, unidades que se podem utilizar consoante uma escala relativa a cada unidade de medida.
Considera-se exemplos de entidades escalares: o tempo, a temperatura, volume, massa, comprimento, entre outras.
Tome-se como exemplo o comprimento. Existem várias escalas para medir esta grandeza.
Segundo o Sistema Internacional de Unidades, a unidade básica para medir o