Engenharia
A Lógica Fuzzy encontra-se entre as técnicas mais recentes de Inteligência Artificial, também conhecida como Conjuntos Fuzzy. Este termo, a princípio, nos convida a pensar em algo confuso (nebuloso), porém, atualmente, é bastante direto.
A Lógica consiste em aproximar a decisão computacional da decisão humana, tornando as máquinas mais capacitadas a seu trabalho. Isto é feito de forma que a decisão de uma máquina não se resuma apenas a um “sim” ou um “não”, mas também tenha decisões “abstratas”, do tipo “um pouco mais”, “talvez sim”, e outras tantas variáveis que representem as decisões humanas. É um modo de interligar inerentemente processos analógicos que deslocam-se através de uma faixa contínua para um computador digital que podem ver coisas com valores numéricos bem definidos(valores discretos).
Uma das principais potencialidades da Lógica Fuzzy, quando comparada com outros esquemas que tratam com dados imprecisos como redes neurais, é que suas bases de conhecimento, as quais estão no formato de regras de produção, são fáceis de examinar e entender. Este formato de regra também torna fácil a manutenção e a atualização da base de conhecimento. http://www.logicafuzzy.com.br/ 2. TEORIA DO CONJUNTO FUZZY
O conjunto de números pares e o conjunto de números ímpares são conjuntos precisos. O conjunto de homens e o conjunto de mulheres também, porém a maioria dos conjuntos e proposições não podem ser caracterizados de maneira tão exata. Na lógica fuzzy, a pertinência de um elemento a um conjunto ocorre gradativamente, expressa através de uma função de pertinência. Nos itens a seguir veremos os componentes da teoria dos Conjuntos Fuzzy, a função de pertinência e as variáveis linguísticas. 2.1 FUNÇÕES DE PERTINÊNCIA
Cada conjunto fuzzy, A, é definido em termos de relevância a um conjunto universal, X, por uma função denominada de função de pertinência, associando a cada elemento x um número, A(x), no intervalo fechado [0,1] que