Divisão de binários
Com esse simples artigo vou mostrar como é feita a conversão e algumas operações bem úteis com o sistema binário e não será abordado nenhuma operação ou conversão com números com sinal. Esse sistema numérico é famosíssimo na informática e é um pouco obrigatório entendê-lo (principalmente se você quer “escovar bits” algum dia), pois as “máquinas” nas quais trabalhamos usam este sistema numérico para realizar todas as operações.
Primeiramente o nome do sistema númerico já ajuda bastante a entender como ele pode ser.
Binário significa que o sistema tem apenas 2 algarismos (1 e 0); decimal tem 10 algarismos, hexadecimal tem hexa(6) + decimal(10), total de 16, porém, como só conhecemos 10 algarismos, letras são usadas para completar o sistema, de A a F; octal tem oito algarismos…
* Na informática é comum ouvir falar e trabalhar com bits e bytes. Um bit é um dígito binário (1 ou 0) e um byte é um conjunto de oito bits. Existe também o termo nibble, cada nibble representa 4 bits.
Uma observação no sistema decimal
Todos nós estamos acostumados a fazer cálculos usando o sistema decimal. Somas, subtrações, multiplicações e divisões. A maneira como olhamos para os números é tão normal que parece ser o único sistema numérico.
Se virmos o número 123, por exemplo, raramente pensaríamos nele como:
1×102 + 2×101 + 3×100 (1 está na casa da centena, 2 na dezena e 3 como unidade).
* Sempre que for citado um número com outro subscrito, ao lado, será o número em determinado sistema numérico.
Exemplo: 12310 significa 123 no sistema decimal
Conversão decimal para binário
CONVERSÃO ENTRE INTEIROS:
Qualquer número a ser convertido, independente do número de algarismos, segue esse padrão. Peguemos o número 12310 como exemplo para conversão para binário. O que precisa ser feito é divisões inteiras sucessivas até chegar no quociente zero e anotar os restos das divisões. 123 |__2__ 1 61 |__2__ 1 30 |__2__ 0 15 |__2__