conhecendo mais
A evolução dos números, assim como a dos conjuntos numéricos, ocorreu de modo a colaborar com a necessidade da humanidade. Os números inteiros apareceram quando os números naturais não satisfaziam todas as necessidades, como, por exemplo, para suprir a inexistência de números negativos no conjunto d
Os números inteiros positivos foram os primeiros números trabalhados pela humanidade e tinham como finalidade contar objetos, animais, enfim, elementos do contexto histórico no qual se encontravam.
O conjunto dos números inteiros positivos recebe o nome de conjunto dos números naturais. Sendo ele: ={0,1,2,3,4,5,6…}
Enquanto que o conjunto dos números inteiros contempla também os inteiros negativos, constituindo o seguinte conjunto:
={…,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8…}
Os números inteiros estão presentes até hoje em diversas situações do cotidiano da humanidade, como, por exemplo, para medir temperaturas, contar dinheiro, marcar as horas, etc. Sua importância é indiscutível.
Diante disso, buscaremos estudar todas as propriedades desse conjunto numérico que existe há tanto tempo, perpassando pela teoria de conjuntos, intersecção de conjuntos numéricos, entre outros conceitos que fazem parte desse conteúdo.
Pertencem ao conjunto dos números inteiros, os números negativos e também o Conjunto dos Números Naturais.
Os números positivos são opostos aos números negativos e os negativos opostos aos positivos.
Sua representação é feita pela letra Z maiúscula.
Z = {..., -4, -3, -2, -1, 0, +1, +2, +3,...}
Observações: os números negativos são sempre acompanhados pelo sinal de negativo
(-) (à sua frente) e os positivos são acompanhados pelo sinal positivo (+) ou sem sinal nenhum. O zero não é positivo e nem negativo.
♦ Inteiros não – nulos
São os números inteiros, menos o zero.
Na sua representação devemos colocar * ao lado do Z.
Z* = {..., -3, -2, -1, 1, 2, 3,...}
♦Inteiros não positivos
São os números negativos