BrunO
Exercício 1: Dê as coordenadas dos pontos assinalados no plano cartesiano abaixo:
A(4 ; 2), B(1 ; 4), C(- 3; 3), D(2 ; 0), E(0 ; 1), F( - 4; 0) e G( - 2 ; - 4)
Exercício 2: Dê o domínio e a imagem das funções representadas a seguir pelos gráficos cartesianos.
a)
Professora: Gisele Lamas
D = ] 1;6 [ e Im= ] 2;8 [
Página 1
b)
c)
D = ] - 2; 2[ e Im = {1,2}
D = [ 2; 6 [
Exercício 3: qual é a notação das seguintes funções de
] 7; 9 ] e Im = [ -2;4[ [ 5; 6[
em
?
a) f associa cada número real ao seu oposto. f(x) = - x
b) g associa cada número real ao seu cubo. f(x) = x³
c) h associa cada número real ao dobro do seu oposto adicionado com 1. f(x) = 2.( - x) +1
Professora: Gisele Lamas
Página 2
Exercício 4: Através de um estudo sobre o consumo C de energia elétrica de uma fábrica, em quilowatt-hora , em função do tempo t, em dia, conclui-se que C = 440 t.
a) Qual é o consumo de energia elétrica dessa fábrica em 8 dias?
Resposta: C = 3.520 kWh.
b) Quantos dias são necessários para que o consumo atinja 4.800 kWh?
Resposta: t = 11 dias
Exercício 5: Represente no plano cartesiano o gráfico de cada função, indicando as coordenadas dos pontos de intersecção do gráfico com os eixos coordenados.
Façam os gráficos, dois pontos são o suficiente para traçar a reta.
a) y = 2.x – 6
Resposta: ( 0 ; - 6) e ( 3 ; 0)
b) y = 4 – x
Resposta: ( 0 ; 4) e ( 4 ; 0)
c) y =
Resposta: ( 0; 2) e
+2
d) y =
Resposta:
e
Exercício 6: A despesa mensal de uma pequena empresa com encargos sociais é dada pela função d(x) = 20 +
, em que d(x) é a despesa, em milhar de real, e x é o
número de funcionários.
a)
Qual será a despesa quando a empresa tiver 100 funcionários?
b)
Qual será o número de funcionários quando a despesa for de 50 mil reais?
Exercício 7: Indique o coeficiente angular (a) e o coeficiente linear (b) das seguintes funções afim: