Atps Fisica 3 Etapa 1 e 2
_ Aula-tema: Campo Elétrico. Lei de Gauss.
Essa atividade é importante para compreender a ação e a distância entre duas partículas sem haver uma ligação visível entre elas e entender os efeitos dessa partícula sujeita a uma força criada por um campo elétrico no espaço que as cerca. Para realizá-la, devem ser seguidos os passos descritos.
Passo 2 (Equipe)
Supor que o pó (produto) de sua empresa esteja carregado negativamente e passando por um cano cilíndrico de plástico de raio R= 5,0 cm e que as cargas associadas ao pó estejam distribuídas uniformemente com uma densidade volumétrica r . O campo elétrico E aponta para o eixo do cilindro ou para longe do eixo? Justificar.
Resp.: O campo elétrico aponta para o eixo do cilindro, pois como o produto está carregado negativamente isso faz com que haja atração das cargas.
Passo 3 (Equipe)
Escrever uma expressão, utilizando a Lei de Gauss, para o módulo do campo elétrico no interior do cano em função da distância r do eixo do cano. O valor de E aumenta ou diminui quando r aumenta? Justificar. Determinar o valor máximo de E e a que distância do eixo do cano esse campo máximo ocorre para r = 1,1 x 10-3 C/m3 (um valor típico).
V=π×r2×h
V=π×0,052×0,05
V=3,927×10-4cm3
OBS: Foi considerado para a altura o mesmo valor do raio, pois o valor do mesmo não foi mencionado no exercício.
∂=1,1×10-33,927×10-4=>2,80 Kg/cm3
∂×π×r2×LEo=E×2×π×r×L
2,48×109=E×3,14×10-1
E=2,48×1093,14×10-1=>7,91×109C
E=7,91 GC
ETAPA 2
Passo 1 (Equipe)
Determinar uma expressão para o potencial elétrico em função da distância r a partir do eixo do cano. (O potencial é zero na parede do cano, que está ligado a terra).
V= K × Qd
Passo 2 (Equipe)
Calcular a diferença de potencial elétrico entre o eixo do cano e a parede interna para uma densidade volumétrica de cargas típica, r = 1,1 x 10-3 C/m3.
Veixo=-ρ . r22 . ε0 → -1,1.10-3 . 0,0522 . 8,85.10-12= -2,75.10-617,7.10-12=-0,155.106=-1,55.105
Vparede=0
DV=