As Equa es de Maxwell
James Clerk Maxwell
Baseando-se nos estudos de Michael Faraday, Maxwell unificou, em 1864, todos os fenômenos elétricos e magnéticos observáveis em um trabalho que estabeleceu conexões entre as várias teorias da época, derivando uma das mais elegantes teorias já formuladas.
Maxwell demonstrou, com essa nova teoria, que todos os fenômenos elétricos e magnéticos poderiam ser descritos em apenas quatro equações, conhecidas atualmente como Equações de Maxwell.
Essas são as equações básicas para o eletromagnetismo, assim como a lei da gravitação universal e as três leis de Newton são fundamentais para a Mecânica Clássica.
Não serão apresentadas nesse artigo as deduções matemáticas das equações de Maxwell, uma vez que essas necessitam do conhecimento do Cálculo Diferencial e Integral, que somente é estudado na íntegra em cursos superiores.
As equações de Maxwell para o eletromagnetismo constam da unificação entre as Leis de Gauss, para a eletricidade e para o magnetismo, a Lei de Ampère generalizada e a Lei de Faraday para a Indução eletromagnética.
Abaixo explicação detalhada sobre o que diz cada lei, para que serve e quais as equações envolvidas.
I. Lei de Gauss
A lei de Gauss relaciona o fluxo elétrico resultante Φ de um campo elétrico, através de uma superfície fechada, com a carga resultante que é envolvida por essa superfície. Em outras palavras, a lei de Gauss relaciona os campos elétricos em pontos sobre uma superfície gaussiana (fechada) com a carga resultante envolta por essa superfície.
Matematicamente, a lei de Gauss é representada pela equação:
Onde:
ε0 = constante de permissividade elétrica no vácuo
Φ = fluxo elétrico resultante q = carga elétrica envolvida
Na equação, “q” é a soma algébrica de todas as cargas envolvidas, sendo elas positivas ou negativas. É importante salientar que o sinal diz algo a respeito do fluxo resultante. Se q for maior do que zero, o fluxo resultante é para fora; se q for