Apostila matematica aplicada
APOSTILA DE MATEMÁTICA (APOIO) - Março/2013 (Cursos ADM e CC Prof. José Marcos
CONJUNTOS DOS NÚMEROS REAIS:
← IN = { 0 , 1 , 2 , 3 , 4 , . . . }[pic] Conjunto dos números naturais ← Z = {. . . , - 4 , - 3 , - 2 , - 1, 0 , 1 , 2 , 3 , 4 , . . . }[pic]Conjunto dos números inteiros ← Q = {[pic]Conjunto dos números racionais ← Irracionais [pic] Conjunto dos números irracionais:
Para todo número natural que não possui raiz exata, a sua raiz é um número irracional. Conseqüentemente, as dízimas não periódicas constituem um número irracional.
Assim: (Q [pic] I ) = Ф (intersecção)
Logo: 1 . 5 - IR = Q[pic]I [pic]Conjunto dos números reais. (união)
Obs.:
[pic]
✓ Pelo que vimos Cuidado: 23 - 31 ≠ 31 - 23 e 4 : 2 ≠ 2 : 4
✓ Regras de potenciação. Sendo a um número real, m e n inteiros positivos, tem-se:
▪ am+n = am.an ▪ am-n = [pic]( se m>n) ▪ (am)n = am.n
▪ (a b)m = am . bm , b [pic]R ▪ [pic][pic]
✓ Para trabalhar com potência de expoente negativo, invertemos a base invertemos o sinal do expoente: a-n = [pic] ou a-n = [pic] e ainda, o caso especial ([pic])-n = ([pic])n = [pic]
PRODUTOS NOTÁVEIS
• Fatoração: Fatorar uma expressão significa escrevê-la como um produto.
Vejamos:
← (a + b)2 = a2 + 2ab + b2 [pic] Trinômio quadrado perfeito (T.Q.P) quadrado da soma forma fatorada
← (a + b)2 = a2 + 2ab + b2 [pic] Trinômio quadrado perfeito (T.Q.P) quadrado da diferença forma fatorada
Problema Proposto: Caio tem 24 notas guardadas em uma caixa, algumas são de R$ 50,00 e outras, de R$5,00. Se Caio tem, nessa caixa, R$ 525,00, quantas notas de R$ 50,00 e quantas notas de R$ 5,00 estão nesta caixa?
Importante:
Essas equações são equações do 1ª grau com uma incógnita, portanto, equação é uma igualdade.
O princípio