Álgebra booleana e circuitos lógicos
Prof. Nice Miranda
Histórico
Em 1847 publica um volume sob o título The Mathematical Analysis of Logic em que introduz os conceitos de lógica simbólica demonstrando que a lógica podia ser representada por equações algébricas. Este trabalho é fundamental para a construção e programação dos computadores eletrônicos iniciada cerca de 100 anos mais tarde.
Histórico
Na Álgebra de Boole existem apenas três operadores E, OU e NÃO (AND, OR, NOT). Estas três funções são as únicas operações necessárias para efetuar comparações ou as quatro operações aritméticas base.
• Em 1937, cerca de 75 anos após a morte de Boole, Claude Shannon, então estudante no MIT - Boston, USA - estabeleceu a relação entre a Álgebra de Boole e os circuitos eletrônicos transferindo os dois estados lógicos (SIM e NÃO) para diferentes diferenças de potencial no circuito.
• Atualmente todos os computadores usam a Álgebra de Boole materializada em microchips que contêm milhares de interruptores miniaturizados combinados em portas (gates) lógicos que produzem os resultados das operações utilizando uma linguagem binária.
Álgebra Booleana
Pode ser definida com um conjunto de operadores e um conjunto de axiomas, que são assumidos verdadeiros sem necessidade de prova.
• Para descrever os circuitos que podem ser construídos pela combinação de portas lógicas, um novo tipo de álgebra é necessário, uma em que as variáveis e funções podem ter apenas valores 0 e 1. Tal álgebra é denominada álgebra booleana, devido ao seu descobridor, o matemático inglês George Boole (1815 1864).
• Do mesmo modo que existem funções em álgebra "comum", também existem funções na álgebra booleana. Uma função booleana tem uma ou mais variáveis de entrada e fornece somente um resultado que depende apenas dos valores destas variáveis.
Diferentemente da álgebra ordinária dos reais, onde as variáveis podem assumir valores no intervalo (-∞, +∞), as variáveis Booleanas só