C 1 etapa 2
Passo 1
A constante de Euler-Mascheroni é uma constante matemática com múltiplas utilizações em Teoria dos números. Ela é definida como olimite da diferença entre a série harmônica e o logaritmo natural.
que pode ser condensada assim :
em que E(x) é a parte inteira de x.
A demonstração da existência de um tal limite pode ser feita pela aplicação do método da comparação série-integral.
As aplicações da constante incluem sua relação com a função gama e a fórmula da reflexão de Euler, além da relação com a função zeta de Riemann e com integrais e integrações impróprias da função exponencial para determinados valores de
Valor aproximado
As 100 primeiras decimais dessa constante são γ ≈ 0,5772156649015328606065120900824024310421593359399235988057672348848677267776646709369470632917467495
História de EULER
Em 1781, Leonhard Euler obteve as 16 primeiras decimais graças ao método de soma de Euler-Mac Laurin. Lorenzo Mascheroni determinou 32 decimais para a sua obra Geometria del compasso, que contribuiu a tornar conhecida a constante.
A constante foi definida pela primeira vez pelo matemático suíço Leonhard Euler no artigo De Progressionibus harmonicus observationes, publicado em 1735. Euler usou a notação C para a constante, e inicialmente calculou seu valor até 6 casas decimais. Em 1761 Euler estendeu seus cálculos, publicando um valor com 16 casas decimais. Em 1790 o matemático italiano Lorenzo Mascheroni introduziu a notação γ para a constante, e tentou estender o cálculo de Euler ainda mais, a 32 casas decimais, apesar de cálculos subseqüentes terem mostrado que ele cometera erros na 20°, 22° e 32 casas decimais. (Do 20° dígito, Mascheroni calculou 1811209008239.)
Não se sabe se a constante de Euler-Mascheroni é ou não um número racional. No entanto, análises mostram que se γ for racional, seu denominador tem mais do que 10242080 dígitos
tabela n | e | 1 | 2 | 5 | 2, 488 | 10 | 2, 593 | 50 | 2, 6915 | 100 | 2, 7048 |