Waldron cap. 3
4 ω3 A 2 C 3 45˚ B3 , B4
AC = 1 in BC = 3 in r = 2.8 in
Position Analysis: Draw the linkage to scale.
2 in 3 A 2 C b 2 , b4 b3 B 45.0° Ov Velocity Polygon 30 in/sec AC = 1 in BC = 3 in
Velocity Analysis:
1
v B3 = 1vB 3 / A 3 = 1ω 3 × rB 3 / A 3 ⇒ 1 vB 3 = 1 ω3 rB 3 / A 3 = 30(2.2084) = 66.252 in / sec
1
v B4 =1 v B2 = 1v B3 + 1vB4 / B3
(1)
- 33 -
1
v B2 = 1v B2 / C2 = 1ω 2 × rB2 / C2
Now,
1 1 1
v B3 = 66.252in / sec in the direction of rB / A
v B2 = 1ω 2 × rB / C (⊥ to rB / C ) v B4 / B3 is on the line of AB
Solve Eq. (1) graphically with a velocity polygon. From the polygon,
1
v B4 / B3 = 15.63in / sec
Also,
1
ω2 =
1v
B2 / C 2
rB / C
=
68.829 = 22.943 rad / sec 3
From the directions given in the position and velocity polygons
1
ω 2 = 22.943 rad / sec CW
- 34 -
Problem 3.2 If ω2 = 10 rad/s CCW, find the velocity of point B3.
E CA = 1.5" DE = 2.5" CD = 4.0" AB = 1.6" Α 18˚
1ω 2
110˚
3 Β
4
2 45˚ D
C
Position Analysis Draw the linkage to scale.
- 35 -
Velocity Analysis
1
v A2 = 1 v C2 + 1 v A2 / C2 = 0 + 1ω2 × rA / C ⇒ 1 v A2 = 1ω2 rA / C = 10(1.5) = 15 in/s v E3 = 1 v A3 + 1 v E3 / A3 = 1 v A2 + 1 v E3 / A3
(1)
1
1
v E3 = 1 v E4 + 1 v E3 / E4 v E4 = 1 v D4 + 1 v E4 / D4 = 0 + 1ω4 × rE / D
1
Now,
1
v A2 = 15 in/s (⊥ to rA / C ) v E3 / A3 = 1ω3 × rE / A (⊥ to rE / A ) v E4 / D4 = 1ω4 × rE / D (⊥ to rE / D )
3
1
1
and
1 ω3 = ω4 , need to get ω3 to find v B .
Define the point F where AF ⊥ DF in position polygon.
1
v F3 = 1 v A3 + 1 v F3 / A3 v F3 = 1 v F4 + 1 v F3 / F4 v F4 = 1 v F3 + 1 v F4 / F3 v F4 = 1 v F4 / D4