Variância dos erros
11. Aditividade e homogeneidade
Aditividade dos efeitos dos fatores de variação, e homogeneidade das variâncias.
O termo variância já apareceu diversas vezes neste texto. O que seria variância, afinal de contas? Eu poderia dizer que variância é o quadrado do desvio-padrão. Contudo ressalvaria que essa afirmativa, ainda que matematicamente correta, é todavia estatisticamente incorreta. Isto porque, na verdade, o que se calcula primeiro é a variância da amostra. Só depois é que se extrai a sua raiz quadrada, para conhecer o desvio-padrão, o qual, por isso mesmo, tem duplo sinal: + ou - (±s).
Variância e graus de liberdade.
Tecnicamente, a variância vem a ser a soma de todos os desvios dos dados amostrais, em relação à média, elevados ao quadrado, soma essa que depois é dividida por (n-1), ou seja, pelo número de graus de liberdade da amostra. Graus de liberdade, por sua vez, não é mais que o número total de dados da amostra, menos 1. Por que esses desvios são elevados ao quadrado? E por que se divide por (n-1), e não simplesmente por n? As respostas a essas duas perguntas parecem-me simples:
elevam-se os desvios ao quadrado porque, em relação à média, muitos deles são negativos e outros positivos, de modo que se fossem simplesmente somados, o resultado seria zero, tal como ocorre com a média desses mesmos desvios. Elevando-se cada um deles ao quadrado, porém, todos se tornam positivos, inclusive os negativos. os graus de liberdade indicam os espaços entre os dados; e são iguais a (n-1) porque os espaços entre eles estão sempre uma unidade abaixo do número dos próprios dados. Para comprovar essa afirmativa, basta contar os dedos de uma das mãos e depois os espaços existentes entre eles. O mesmo ocorre em qualquer conjunto de dados amostrais. Isso compreendido, percebe-se que dividir pelo número de graus de liberdade significa dividir pelo número de espaços entre