trabalho
2- Utilizando a lei dos cossenos, temos: c² = a²+b² - 2.a.b.cos(45º) substituindo os valores, c²=16+18-(24√2.√2/2) c² = 10 c=√10 3- Use a lei dos cossenos para o ângulo a:
BC² = AB²+AC² -2(AB)(AC)cosa
4²=3³+3²-2.3.3.cosa
16 =18 -18cosa
18cosa =2 cosa=2/18 ou 1/9
Lei dos cossenos
4- x² = 10² + 6² – 2 * 6 * 10 * cos 120º x² = 100 + 36 – 120 * (–1/2) x² = 136 + 60 x² = 196
√x² = √196 x = 14
O terceiro lado mede 14 centímetros.
5- a² = b² + c² - 2.b.c.cos(A)
a² = (8²V2)² + 10² - 2.8²V2.10.²V2/2
a² = 128 + 100 - 160 = 68
a = ²V68 = ²V(4.17) = 2²V17 = 8,25
lei de cossenus
6- a² = b² + c² -2.b.c.cos(A)
a² = 10² + 14² - 2.10.14.cos(60°) = 100 + 196 - 140 = 156
a =²V156 ~ 12,5
7- c² = a² + b² - 2abcosC cosC = ( a² + b² - c² ) / 2ab cosC = [ 5² + (√2)² - (√17)² ] / 2.5.√2 cosC = √2/2
=> C = 45°
8- Regra do paralelogramo
R² =(F1)²+(F2)²+2(F1)(F2)cos60º
R²=64+144+2.8.12(1/2)
R²= 64+144+96
R² =304
R=4√19 N
9- ?
10- L² = r² + r² - 2*r*r*(cos(A)
L² = 2r² - 2r²*cos(36º)
L² = 2r²*(1 - cos(36º)
L² = 2r²*(1 - 0,809)
L² = 2r²*0,191
L² = 0,382*r²
L = √0,382 * r
11- 50º + 68º + x = 180º x = 180 - 118 = 62º
Lei dos senos
a/sen(A) = b/sen(B) = c/sen(C) a/sen(50º) = b/sen(62º) = 5/sen(68º)
sen(50º) = 0,766 sen(62º) = 0,883 sen(68º) = 0,927
a = 5*sen(50)/sen(68) = 5*0,766/0,927 = 4,13 b = 5*sen(62)/sen(68) = 5*0,883/0,927 = 4,76 c = 5
12- 120+45+APB=180
APB=15°
Como determinar o Sen 15°:
Vamos usar a lei dos arcos
Sen(a-b)=Sena.cosb-sen b .cosa
Sen(45-30)=Sen 45°.Cos30°-Sen30°.Cos 45°
Sen(45-30)= raiz de 6 - raiz de 2/4
Sen 15°=Raiz de 6-raiz 2/4
Agora para calcular usamos lei dos senos
P/SEN P=X/SEN45°
2/raiz de 6-raiz 2/4=x/raiz de 2/2
DAP= 2 raiz de 6+2raiz de 2