Trab Mat
Denomina-se equação do 2° grau, qualquer sentença matemática que possa ser reduzida à forma ax2 + bx + c = 0, onde x é a incógnita e a, b e c são números reais, com a ≠ 0. a, b e c são coeficientes da equação. Observe que o maior índice da incógnita na equação é igual a dois e é isto que a define como sendo uma equação do segundo grau.
Tipos de Equações
Equação do 2° grau completa e equação do 2° grau incompleta
Da definição acima temos obrigatoriamente que a ≠ 0, no entanto podemos ter b = 0 e/ou c = 0.
Caso b ≠ 0 e c ≠ 0, temos uma equação do 2° grau completa. A sentença matemática -2x2 + 3x - 5 = 0 é um exemplo de equação do 2° grau completa, pois temos b = 3 e c = -5, que são diferentes de zero.
-x2 + 7 = 0 é um exemplo de equação do 2° grau incompleta, pois b = 0.
Neste outro exemplo, 3x2 - 4x = 0 a equação é incompleta, pois c = 0.
Veja este último exemplo de equação do 2° grau incompleta, 8x2 = 0, onde tanto b, quanto c são iguais a zero
Resolução de equações do 2° grau
A nome Fórmula de Bhaskara foi dada em homenagem ao matemático Bhaskara Akaria, considerado o mais importante matemático indiano do século XII.
A fórmula de Bhaskara é principalmente usada para resolver equações quadráticas de fórmula geral ax2+bx+c=0, com coeficientes reais, com a≠0 e é dada por:
chamamos de discriminante: Δ = b2-4ac
Dependendo do sinal de Δ, temos:
Δ=0, então a equação tem duas raízes iguais.
Δ>0, então a equação tem duas raízes diferentes.
Δ<0, então a equação não tem raízes reais.
A ideia da demonstração da fórmula de Bhaskara é o completamento de quadrados. Seja: ax2+bx+c=0 a2x2+abx+ac=0
4a2x2+4abx+4ac=0
4a2x2+4abx+b2+4ac=b2
(2ax)2+2(2ax)b+b2=b2-4ac
(2ax+b)2=b2-4ac
Através da Fórmula de Bhaskara podemos deduzir uma expressão para a soma (S) e o produto (P) das raízes da equação do 2º grau.
Sendo x1 e x2 raízes da equação ax2+bx+c=0, então:
S = x1+x2 = -b/a
P = x1.x2 = c/a
A importância da Fórmula de Bhaskara é que ela nos permite