teste
Vejamos um exemplo para a função:
1:Respostas
A)
C(0) = 3.(0) + 60 = 0+60=60
C(5) =3.(5) + 60 = 15+60=75
C(10) =3.(10) + 60 = 30+60=90
C(15) =3.(15) + 60 = 45+60=105
C(20) =3.(20) + 60 = 60+60=120
B) gráfico
C) C= 3.(0)+60=0+60=60
D) E crescente o coeficiente do preço
E) c(q)=0 ==> 0 = 3q + 60 ==> 3q = - 60 ==> q = - 20. Logo a quantidade deverá ser maior que -20. q > - 20
ETAPA 2 Uma função para ser do 2º grau precisa assumir algumas características, pois ela deve ser dos reais para os reais, definida pela fórmula f(x) = ax2 + bx + c, sendo que a, b e c são números reais com a diferente de zero. Concluímos que a condição para que uma função seja do 2º grau é que o valor de a, da forma geral, não pode ser igual a zero. Então, podemos dizer que a definição de função do 2º grau é: f: R→ R definida por f(x) = ax2 + bx + c, com a Є R* e b e c Є R. Numa função do segundo grau, os valores de b e c podem ser iguais a zero, quando isso ocorrer, a equação do segundo grau será considerada incompleta. Veja alguns exemplos de função do 2o grau.
A) Abril e Junho
E = t² - 8t + 210
195 = t² - 8t + 210 t² -8t +210 -195 = 0
t²