Teste
.
QUARTIS
Denominamos quartis os valores de uma série que a dividem em quatro partes iguais.
Precisamos portanto de 3 quartis (Q1 , Q2 e Q3 ) para dividir a série em quatro partes iguais.
Obs: O quartil 2 ( Q2 ) sempre será igual a mediana da série.
Quartis em dados não agrupados
O método mais prático é utilizar o princípio do cáculo da mediana para os 3 quartis. Na realidade serão calculadas " 3 medianas " em uma mesma série.
Exemplo1: Calcule os quartis da série: { 5, 2, 6, 9, 10, 13, 15 }
O primeiro passo a ser dado é o da ordenação (crescente ou decrescente) dos valores:
{ 2, 5, 6, 9, 10, 13, 15 }
O valor que divide a série acima em duas partes iguais é igual a 9, logo a Md = 9 que será = Q2.
Temos agora {2, 5, 6 } e {10, 13, 15 } como sendo os dois grupos de valores iguais proporcionados pela mediana ( quartil 2). Para o cáculo do quartil 1 e 3 basta calcular as medianas das partes iguais provenientes da verdadeira Mediana da série (quartil 2).
Logo em { 2, 5, 6 } a mediana é = 5 . Ou seja: será o quartil 1
em {10, 13, 15 } a mediana é =13 . Ou seja: será o quartil 3
Exemplo2: Calcule os quartis da série: { 1, 1, 2, 3, 5, 5, 6, 7, 9, 9, 10, 13 }
A série já está ordenada, então calcularemos o Quartil 2 = Md = (5+6)/2 = 5,5
O quartil 1 será a mediana da série à esquerda de Md : { 1, 1, 2, 3, 5, 5 }
Q1 = (2+3)/2 = 2,5
O quartil 3 será a mediana da série à direita de Md : {6, 7, 9, 9, 10, 13 }
Q3 = (9+9)/2 = 9
Quartis para dados agrupados em classes
Usamos a mesma técnica do cálculo da mediana, bastando substituir, na fórmula da mediana,
E fi / 2.... por ... k . E fi / 4 ... sendo k o número de ordem do quartil.
Assim, temos:
Q1 = . l* + [(E fi / 4 - FAA ) x h*] / f*
Q2 = . l* + [(2.E fi / 4 - FAA ) x h*] / f*
Q3 = . l* + [(3.E fi / 4 - FAA )