Tabela de derivadas
Constante Potência
TABELA BÁSICA DE INTEGRAIS
Propriedades: n–1
( c )` = 0 ( x )` = n.x x x n n–1
( u ) ` = n.u
n
∫ n . f ( x ). dx
∫ [ f (x) +
= n .∫ f ( x ) + c
( n é constante )
.u`
g ( x )]. dx =
∫
f ( x ). dx +
∫ g ( x ). dx
( a ) ` = a .ln a
Exponencial
( au ) ` = u`.au. ln a ( eu ) ` = u`.eu
Método de Integração por Partes:
( ex ) ` = ex
∫
∫
a b
u . dv
= u .v − b ∫
v . du
Logarítmica
Neperiana
1 ou a x . ln a u` u (log a )` = ou u . ln a 1 (ln x )` = (ln u x (log x )` =
1 e . log a x u` e . log a u u` )` = u
Integral Definida:
f ( x ). dx = F ( x ) a ⇔ F (b ) − F (a )
∫ du = u + c
∫
∫
u n du =
u n +1 + c n +1
( n é constante ≠ – 1 )
(sen x)` = cos x (cos x)` = – sen x
Trigonométrica
(sen u)` = u`.cos u (cos u)` = – u`.sen u (tg u)` = u`.sec² u (cotg u)` = – u`.csc² u (sec u)` = u`.sec u . tg u (csc u)` = – u`.cscu.cotgu u` ( arcsen u )`= 1− u²
− ( u `) (arccos u )`= 1− u²
∫ ln du u u u . du = u . ln u − u + c
= ln u + c
= eu + c
∫
∫
(tg x)` = sec² x (cotg x)` = – csc² x (sec x)` = sec x . tg x (csc x)` = – cscx.cotg x 1 ( arcsen x )`= 1 − x²
(arccos x )`= −1 1 − x²
1 . dx x e kx
= ln x + c
= e kx ∫e
du
. dx
k
+ c
∫ senu .du = − cos u + c ∫ cos u.du = senu + c ∫ tgu .du = ln sec u + c
∫ cot gu.du = ln senu + c ∫ sec u .du ∫ csc u .du ∫ tg ² u .du
∫ senkx .dx
=−
cos kx +c k senkx + c
∫ cos kx .dx = k ∫ tgu .du = − ln cos
u +c
Trigonométrica Inversa
( arctg x )`=
1 1 + x²
−1 1 + x²
( arctg u )`=
u` 1+ u²
− ( u `) 1+ u²
= ln sec u + tgu + c
∫ sec ² u .du = tgu + c
= ln csc u − cot gu + c
( arc cot g x )`=
( arc cot g u )`=
( arc sec x )`=
1 x. x ² − 1
( arc sec u )`=
u` u. u ² − 1
∫ csc ² u .du = − cot gu + c
= tgu − u + c = sec u + c
−1 ( arc csc x )`= x. x ² − 1
Soma
− ( u `) ( arc csc u )`= u. u ² − 1