Slide Semicondutores
Electronic Materials and
Devices to use these slides in seminar, symposium and conference presentations provided that the book title, author and © McGraw-Hill are displayed under each diagram.
From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005)
Silicon is the most important semiconductor in today’s electronics
|SOURCE: Courtesy of IBM
From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005)
200 mm and 300 mm Si wafers.
|SOURCE: Courtesy of MEMC, Electronic Materials,
Inc.
From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005)
GaAs ingots and wafers.
GaAs is used in high speed electronic devices, and optoelectronics. |SOURCE: Courtesy of Sumitomo Electric
Industries, Ltd.
From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005)
(a) A simplified two-dimensional illustration of a Si atom with four hybrid orbitals ψhyb. Each orbital has one electron.
(b) A simplified two-dimensional view of a region of the Si crystal showing covalent bonds.
(c) The energy band diagram at absolute zero of temperature.
Fig 5.1
From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005)
A two-dimensional pictorial view of the Si crystal showing covalent bonds as two lines where each line is a valence electron.
Fig 5.2
From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005)
(a) A photon with an energy greater than Eg can excite an electron from the VB to the CB.
(b) When a photon breaks a Si-Si bond, a free electron and a hole in the Si-Si bond is