A insulina exerce um papel central na regulação da homeostase da glicose e atua de maneira coordenada em eventos celulares que regulam os efeitos metabólicos e de crescimento. A sub-unidade b do receptor de insulina possui atividade tirosina quinase intrínseca. A autofosforilação do receptor, induzida pela insulina, resulta na fosforilação de substratos protéicos intracelulares, como o substrato-1 do receptor de insulina (IRS-1). O IRS-1 fosforilado associa-se a domínios SH2 e SH3 da enzima PI 3-quinase, transmitindo, desta maneira, o sinal insulínico. A insulina parece exercer feedback positivo na sua secreção, pela interação com seu receptor em células B pancreáticas. Alterações nos mecanismos moleculares da via de sinalização insulínica sugerem uma associação entre resistência à insulina e diminuição da secreção deste hormônio, semelhante ao observado em diabetes mellitus tipo 2. Uma das anormalidades associadas à resistência à insulina é a hiperlipidemia. O aumento do pool de ácidos graxos livres circulantes pode modular a atividade de enzimas e de proteínas que participam na exocitose da insulina. Essa revisão descreve também os possíveis mecanismos de modulação da secreção de insulina pelos ácidos graxos em ilhotas pancreáticas.A ação da insulina na célula inicia-se pela sua ligação ao receptor de membrana plasmática. Este receptor está presente em praticamente todos os tecidos dos mamíferos, mas suas concentrações variam desde 40 receptores nos eritrócitos circulantes até mais de 200.000 nas células adiposas e hepáticas. O receptor de insulina é uma glicoproteína heterotetramérica constituída por 2 sub-unidades a e duas subunidades b, unidas por ligações dissulfeto (9). A sub-unidade a é inteiramente extracelular e contém o sítio de ligação da insulina. A sub-unidade b é uma proteína transmembrana responsável pela transmissão do sinal e possui atividade tirosina quinase (10). O ATP age como doador de fosfatos e a fosforilação ocorre em resíduos tirosina. O