Secao 3 4 S
3.4
REGRA DA CADEIA
1
SOLUÇÕES
1. Seja u = g(x) = x2 + 4x + 6 e y = f(u) = u5.
dy dy du
Então
=
= (5u 4 )(2 x + 4) dx du dx
= 5( x2 + 4 x + 6)4 (2 x + 4)
12. g (t ) = (6t 2 + 5)3 (t 3 - 7)4
g ¢(t ) = (6t 2 + 5)3 (4)(t 3 - 7) 3 (3t 2 )
+ 3 (6t 2 + 5)2 (12t ) (t 3 - 7)4
= 12t (6t 2 + 5)2 (t 3 - 7)3 [t (6t 2 + 5) + 3(t 3 - 7)]
= 10( x2 + 4 x + 6)4 ( x + 2)
= 12t (6t 2 + 5)2 (t 3 - 7)3 (9t 3 + 5t - 21)
2. Seja u = g(x) = 3x e y = f(u) = tg u. Então
dy dy du
=
= (sec2 u )(3) = 3 sec2 3 x. dx du dx
3. Seja u = g(x) = tg x e y = f(u) = cos u. Então
æ y - 6 ö3
÷÷
13. F ( y ) = çç çè y + 7 ÷ø÷
æ y - 6 ÷ö2 ( y + 7)(1) - ( y - 6)(1)
÷÷
F ¢( y ) = 3ççç
( y + 7) 2 è y + 7 ÷ø
dy dy du
=
= (-sen u )(sec2 x) = -sen (tg x)sec2 x. dx du dx
æ y - 6 ÷ö2
13
39( y - 6)2
÷÷
= 3çç
=
( y + 7) 4 èç y + 7 ø÷ ( y + 7) 2
4. Seja u = g(x) = 1 + x3 e y = f(u) = u1/3. Então
æ t 3 + 1÷ö1/ 4
dy dy du
=
= 13 u-2/3 (3 x2 ) dx du dx
= (1 + x3 )-2/3 x2 =
5. F ( x) = ( x3 - 5 x)4
14. s (t ) = ççç 3
÷÷
èç t - 1÷ø
2
x
(1 + x3 )2/3
s ¢(t ) =
3
-8
6. f (t ) = (2t - 6t + 1)
2
f ¢( z ) =
-9
f ¢(t ) = -8(2t - 6t + 1) (4t - 6)
= -16(2t 2 - 6t + 1)-9 (2t - 3)
7. g ( x) =
x2 - 7 x = ( x2 - 7 x)1/ 2
g ¢( x) = 12 ( x2 - 7 x)-1/ 2 (2 x - 7) =
2x - 7
1
= (t 2 - 2t - 5)-4
(t 2 - 2t - 5)4
8(1 - t ) f ¢(t ) = -4(t 2 - 2t - 5)-5 (2t - 2) = 2
(t - 2t - 5)5
1
1æ 1 ö
1
1
y ¢ = cos çç- 2 ÷÷÷ = - 2 cos x x çè x ø x x
11. G ( x) = (3 x - 2)10 (5 x2 - x + 1)12
G ¢( x) = (3x - 2) (12) (5 x - x + 1)11 (10 x - 1)
10
=
-6/5
- 1)
x
7 - 3x
(2) = - 52 (2 z - 1)-6/5
7 - 3 x - x( 12 ) (7 - 3 x)-1/ 2 (-3)
7 - 3x
1
3x
14 - 3 x
+
ou
2(7 - 3 x)3/ 2
2(7 - 3 x)3/ 2
7 - 3x
17. Utilizando a Fórmula 5 e a Regra da Cadeia, y = 5–1/x
y¢ = 5–1/x (ln 5) [–1 ⋅ (–x–2)] = 5–1/x (ln 5)/x2
1 + 2 tg x
y ¢ = 12 (1 + 2 tg x)-1/ 2 2sec2 x =
h¢(t ) = 32 (t - 1/t )1/ 2 (1 + 1/t 2 )
10. y = sen
f ¢( x) =
18. y =
- 15 (2 z
16. f ( x) =
2 x2 - 7 x
8. f (t ) =
3/ 2
9. h(t ) =