Resumo Matem Tica Financeira P1
JUROS COMPOSTOS
FV = montante/valor futuro
PV = capital/valor inicial
J = juros em reais i = taxa de juros em porcentagem na fórmula usar decimal n = prazo/vencimento
Fórmulas
Montante
FV = PV + J
FV = PV x (1 + i )ᶰ
Capital
PV = FV – J
PV = FV (1 + i)ᶰ
Juros
J = FV – PV
J = PV x ((1+ i)ᶰ -1)
Taxa de Juros
x 100 taxa de juros para uma unidade de tempo
x 100 taxa de juros para o período inteiro
Tempo
FV n = log PV log (1 + i)
SEMPRE IGUALAR n E i
SE A TAXA DE JUROS FOR MENSAL O TEMPO DEVE ESTAR REPRESENTADO EM MESES
SEMPRE NA MESMA UNIDADE
(1 + i)ᶰ = fator de capitalização
RENDIMENTO = JUROS
RESGATE = MONTANTE
Quando há atraso de pagamento = calcula o PV normalmente e do resultado se extrai a multa através de um novo PV
O PV é subtraído da entrada, se houver.
Se existe um pagamento de entrada, o n é zero (para a fórmula de equivalência).
Quando há calculo de IF e IR, depois de calcular o FV, você pega apenas o juros (o que foi acrescido no PV) para calcular o IF, e então subtrai esse valor (IF) dos juros para poder calcular o IR.
Seguindo essa linha, o juros liquido no final vai ser = Juros encontrado inicialmente menos o IR. E então você finaliza o FV, fazendo o PV mais o juros liquido.
Em algumas situações é preciso chamar o PV e o FV de valores fictícios.
PARA ENCONTRAR O N
Quando a incógnita é o n, você transforma tudo para log, por exemplo:
3 = (1,25)ᶰ log 3 = n x log 1,25
E se houver uma divisão (em baixo do 1,25) ela se transforma em subtração.
Quando o exercício dá uma relação com uma “fração” você multiplica em cruz.
A GENTE APRENDEU A PAGINA 26??
TAXAS DE JUROS VARIAVEIS
FV = PV x ((1 + i₁) x (1 + i₂) x (1 + i₃))
J = PV x ((1 + i₁) x (1 + i₂) x (1 + i₃) -1)
EQUIVALENCIA DE CAPITAIS
X = Y + Y
(1 + i)ᶰ (1 + i)ᶰ (1 + i)ᶰ
DESCONTO DE TÍTULO
VN = valor nominal do título no vencimento
VA = valor atual do titulo