quartis
QUARTIS
Na estatística descritiva, um quartil é qualquer um dos três valores que divide o conjunto ordenado de dados em quatro partes iguais, e assim cada parte representa 1/4 da amostra ou população.
Assim, no caso duma amostra ordenada,
Primeiro quartil (designado por Q1/4) = quartil inferior = é o valor aos 25% da amostra ordenada = 25º percentil
Segundo quartil (designado por Q2/4) = mediana = é o valor até ao qual se encontra 50% da amostra ordenada = 50º percentil, ou 5º decil.
Terceiro quartil (designado por Q3/4) = quartil superior = valor a partir do qual se encontram 25% dos valores mais elevados = valor aos 75% da amostra ordenada = 75º percentil Quartis em dados não agrupados
O método mais prático é utilizar o princípio do cálculo da mediana para os 3 quartis. Na realidade serão calculadas " 3 medianas " em uma mesma série.
Exemplo1: Calcule os quartis da série: { 5, 2, 6, 9, 10, 13, 15 }
O primeiro passo, a ser dado é o da ordenação (crescente ou decrescente) dos valores:
{ 2, 5, 6, 9, 10, 13, 15 }
O valor que divide a série acima em duas partes iguais é igual a 9, logo a Md = 9 que será = Q2.
Temos agora {2, 5, 6 } e {10, 13, 15 } como sendo os dois grupos de valores iguais proporcionados pela mediana ( quartil 2). Para o cáculo do quartil 1 e 3 basta calcular as medianas das partes iguais provenientes da verdadeira Mediana da série (quartil 2).
Logo em { 2, 5, 6 } a mediana é = 5 . Ou seja: será o quartil 1 em {10, 13, 15 } a mediana é =13 . Ou seja: será o quartil 3
Quartis para dados agrupados em classes
Usamos a mesma técnica do cálculo da mediana, bastando substituir, na fórmula da mediana,
E fi / 2.... por ... k . E fi / 4 ... sendo k o número de ordem do quartil.
Assim, temos:
Q1 = . l* + [(E fi / 4 - FAA ) x h*] / f*
Q2 = . l* + [(2.E fi / 4 - FAA ) x h*] / f*
Q3 = . l* + [(3.E fi / 4 - FAA ) x h*] / f*
Exemplo3 - Calcule os quartis da tabela abaixo:
Classes
Frequência
Frequência acumulada