Preto Branco
Quando Redes Neurais Artificiais de uma só camada são utilizadas os padrões de treinamento apresentados à entrada são mapeados diretamente em um conjunto de padrões de saída da rede, ou seja não é possível a formação de uma representação interna. Neste caso, a codificação proveniente do mundo exterior deve ser suficiente para implementar esse mapeamento.
Tal restrição implica que padrões de entrada similares resultem em padrões de saída similares, o que leva o sistema à incapacidade de aprender importantes mapeamentos. Como resultado, padrões de entrada com estruturas similares, fornecidos do mundo externo, que levem a saídas diferentes não são possíveis de serem mapeados por redes sem representações internas, isto é, sem camadas intermediárias. Um exemplo clássico deste caso é a função ou-exclusivo (XOR).
Minsky e Papert analisaram matematicamente o Perceptron e demostraram que redes de uma camada não são capazes de solucionar problemas que não sejam linearmente separáveis. Como não acreditavam na possibilidade de se construir um método de treinamento para redes com mais de uma camada, eles concluíram que as redes neurais seriam sempre suscetíveis a essa limitação.
Contudo, o desenvolvimento do algoritmo de treinamento backpropagation, por Rumelhart, Hinton e Williams em 1986, precedido por propostas semelhantes ocorridas nos anos 70 e 80, mostrou que é possível treinar eficientemente redes com camadas intermediárias, resultando no modelo de Redes Neurais Artificiais mais utilizado atualmente, as redes Perceptron Multi-Camadas (MLP), treinadas com o algoritmo backpropagation.
Nessas redes, cada camada tem uma função específica. A camada de saída recebe os estímulos da camada intermediária e constrói o padrão que será a resposta. As camadas intermediárias funcionam como extratoras de características, seus pesos são uma codificação de características apresentadas nos padrões de entrada e permitem que a rede crie sua