Operações com polinômios
Polinômio é uma expressão algébrica composta por dois ou mais monômios.
Adição e Subtração
Considere os polinômios –2x² + 5x – 2 e –3x³ + 2x – 1. Vamos efetuar a adição e a subtração entre eles.
Adição
(–2x² + 5x – 2) + (–3x³ + 2x – 1) → eliminar os parênteses realizando o jogo de sinal
–2x² + 5x – 2 – 3x³ + 2x – 1 → reduzir os termos semelhantes
–2x² + 7x – 3x³ – 3 → ordenar de forma decrescente de acordo com a potência
–3x³ – 2x² + 7x – 3
Subtração
(–2x² + 5x – 2) – (–3x³ + 2x – 1) → eliminar os parênteses realizando o jogo de sinal
–2x² + 5x – 2 + 3x³ – 2x + 1 → reduzir os termos semelhantes
–2x² + 3x – 1 + 3x³ → ordenar de forma decrescente de acordo com a potência
3x³ – 2x² + 3x – 1
Multiplicação de polinômio por monômio
Para entendermos melhor, observe o exemplo:
(3x2) * (5x3 + 8x2 – x) → aplicar a propriedade distributiva da multiplicação
15x5 + 24x4 – 3x3
Multiplicação de polinômio por polinômio
Para efetuarmos a multiplicação de polinômio por polinômio também devemos utilizar a propriedade distributiva. Veja o exemplo:
(x – 1) * (x2 + 2x – 6) x2 * (x – 1) + 2x * (x – 1) – 6 * (x – 1)
(x³ – x²) + (2x² – 2x) – (6x – 6) x³ – x² + 2x² – 2x – 6x + 6 → reduzindo os termos semelhantes. x³ + x² – 8x + 6
Portanto, nas multiplicações entre monômios e polinômios aplicamos a propriedade distributiva da multiplicação.
Divisão de Polinômios
Na divisão de polinômios, utilizamos duas regras matemáticas fundamentais: realizar a divisão entre os coeficientes numéricos e divisão de potências de mesma base (conservar a base e subtrair os expoentes).
Quando trabalhamos com divisão, utilizamos também a multiplicação no processo. Observe o seguinte esquema:
Vamos dividir um polinômio por um monômio, com o intuito de entendermos o processo operatório. Observe:
Exemplo 1:
Para verificar se a divisão está correta, basta multiplicar o quociente pelo divisor, com vistas a obter o dividendo como resultado.